DOI QR코드

DOI QR Code

Preliminary Study on the Effects of Virtual Reality-based Cognitive Rehabilitation and Computer-based Cognitive Rehabilitation on Function and Prefrontal Cortex in Convalescent Stroke Patients

가상현실기반 인지재활훈련과 컴퓨터기반 인지재활훈련이 회복기 뇌졸중 환자의 기능과 전전두엽 피질에 미치는 영향에 대한 사전연구

  • Hyun-Min Lee (Department of Physical Therapy, Honam University) ;
  • Soo-San Kim (Department of Rehabilitation Science, Graduate School, Honam University)
  • 이현민 (호남대학교 물리치료학과) ;
  • 김수산 (호남대학교 대학원 재활과학과)
  • Received : 2023.04.19
  • Accepted : 2023.05.04
  • Published : 2023.05.31

Abstract

PURPOSE: This study compared the effects of computer-based and virtual reality-based cognitive rehabilitation programs on the cognitive function, upper limb function, activities of daily living, and their impact on the prefrontal cortex in convalescent stroke patients. METHODS: Ten recovering stroke patients were assessed for their cognitive function, upper limb function, and daily living activities using the Neurobehavioral Cognitive Status Examination, the Korean version of the Fugl-Meyer Assessment, and the Korean version of the Modified Barthel Index. The prefrontal cortex activity was measured with functional Near Infrared Spectroscopy. The virtual reality-based cognitive rehabilitation group utilized a program of daily living activities delivered via a laptop and Oculus Rift. The computer-based cognitive rehabilitation group performed various cognitive tasks on an all-in-one PC. Both groups underwent cognitive rehabilitation training for 30 minutes per day, three times a week, for six weeks, with identical conventional rehabilitation therapies in the hospital. RESULTS: Both programs positively impacted the cognitive and physical functions. On the other hand, the virtual reality-based cognitive rehabilitation program had a larger influence on improving the cognitive and physical functions of convalescing stroke patients. CONCLUSION: The virtual reality program suggests its potential to enhance cognitive and physical functions in convalescent stroke patients through increased engagement, focus, real-time feedback, and game elements, making it a promising rehabilitation approach.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1F1A1071694).

References

  1. Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245-54. https://doi.org/10.1016/S0140-6736(13)61953-4
  2. Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Neurorehabil Neural Repair. 2017;31(9):793-9. https://doi.org/10.1177/1545968317732668
  3. Hachinski V. Vascular dementia: a radical redefinition. Dementia. 1994;5(3-4):130-2. https://doi.org/10.1159/000106709
  4. Nys GM, van Zandvoort MJ, de Kort PL, et al. The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurol. 2005;64(5):821-7. https://doi.org/10.1212/01.WNL.0000152984.28420.5A
  5. Radomski MV, Latham CAT. Occupational therapy for physical dysfunction. Lippincott Williams & Wilkins. 2008.
  6. Brookes RL, Willis TA, Patel B, et al. Depressive symptoms as a predictor of quality of life in cerebral small vessel disease, acting independently of disability; a study in both sporadic small vessel disease and CADASIL. Int J Stroke. 2013;8(7):510-7. https://doi.org/10.1111/j.1747-4949.2011.00763.x
  7. Skidmore ER, Whyte EM, Holm MB, et al. Cognitive and affective predictors of rehabilitation participation after stroke. Arch Phys Medic Rehabil. 2010;91(2):203-7. https://doi.org/10.1016/j.apmr.2009.10.026
  8. Yang NY, Park HS, Yoon TH, et al. Effectiveness of motion-based virtual reality training(Joystim) on cognitive function and activities of daily living in patients with stroke. J of RWEAT. 2018;12(1):10-9.
  9. Park DS, Shin GI, Woo YS, et al. A study on the effectiveness of rehabilitation by virtual reality program: systematic review. Journ Rehabil Res. 2018;22(3):209-24. https://doi.org/10.16884/JRR.2018.22.3.209
  10. Park JG. Effects of spatial cognitive training based on virtual reality on prefrontal cortex of older adults with mild cognitive impairment: single subject design. The Journal of Kor Soc Cogn Rehabi. 2019;8(2):23-41.
  11. Pichierri G, Wolf P, Murer K, et al. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review. BMC geriatrics. 2011;11(1):1-19. https://doi.org/10.1186/1471-2318-11-1
  12. Lohse KR, Hilderman CG, Cheung KL, et al. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS one. 2014;9(3):e93318.
  13. Nijland R, van Wegen EE, Verbunt J, et al. A comparison of two validated tests for upper limb function after stroke: The Wolf Motor Function Test and the Action Research Arm Test. J Rehabil Med. 2010;42(7):694-6. https://doi.org/10.2340/16501977-0560
  14. Subramanian SK, Lourenco CB, Chilingaryan G, et al. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neur Rep. 2013;27(1):13-23. https://doi.org/10.1177/1545968312449695
  15. Kiernan RJ, Mueller J, Langston JW, et al. The neurobehavioral cognitive status examination: A brief but differentiated approach to cognitive assessment. Ann Int Med. 1987;107(4):481-5. https://doi.org/10.7326/0003-4819-107-4-481
  16. Jung W, Choi H, Park K. Neurobehavioral cognitive status examination (NCSE) in brain-injured patients. J Korean Soc Occup Ther. 1999;7(1):1-16.
  17. Fugl-Meyer AR, Jaasko L, Leyman I, et al. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.
  18. Singer B, Garcia-Vega J. The Fugl-Meyer upper extremity scale. J Physiother. 2017;63(1):53.
  19. Jung HY, Han TR, Park BK, et al. Development of the Korean version of Modified Barthel Index (K-MBI): Multi-center study for subjects with stroke. ARM. 2007;31(3):283-97.
  20. Jung HY, Park BK, Shin HS, et al. Development of the Korean version of Modified Barthel Index (K-MBI): multi-center study for subjects with stroke. J Kor Acad of Rehabil Med. 2007;31(3):283-97.
  21. Shuvra LT, Islam SMR, Zaman N, et al. Analysis of hemodynamic response function using fNIRS. 2018 International Conference on Innovation in Engineering and Technology (ICIET). IEEE. 2018:1-6.
  22. Yoon JA, Kong IJ, Choi JK, et al. Neural compensatory response during complex cognitive function tasks in mild cognitive impairment: a near-infrared spectroscopy study. Neural Plast. 2019;7:8
  23. OBELAB Inc.: NIRSIT Channel Information, 2022. Qvailable at https://www.obelab.com/info/notice.php. 2022.
  24. Laver K, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane database of systematic reviews, 2017;11:1465-1858. https://doi.org/10.1002/14651858.CD008349.pub4
  25. Proffitt R, Lange B. Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward. Physic Ther. 2015;95(3):441-8. https://doi.org/10.2522/ptj.20130571
  26. Levin MF, Snir O, Liebermann DG, et al. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. Neurol Ther. 2012;1:1-15. https://doi.org/10.1007/s40120-012-0001-y
  27. van de Ven RM, Schmand B, Groet E, et al. The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: Rationale, design and methods of the TAPASS study. BMC neurology. 2015;15(1):1-12. https://doi.org/10.1186/s12883-015-0397-y
  28. Cicerone KD, Goldin Y, Ganci K, et al. Evidence-based cognitive rehabilitation: systematic review of the literature from 2009 through 2014. Arch Phys Med Rehabil. 2019;100(8):1515-33. https://doi.org/10.1016/j.apmr.2019.02.011
  29. Kueider AM, Parisi JM, Gross AL, et al. Computerized cognitive training with older adults: a systematic review. PloS one. 2012;7(7):e40588.
  30. Lezak MD, Howieson DB, Loring DW, et al. Neuropsychological assessment. Oxford University Press, USA. 2004.
  31. Lovden M, Backman L, Lindenberger U, et al. A theoretical framework for the study of adult cognitive plasticity. Psycholog bullet. 2010;136(4):659.
  32. das Nair R, Cogger H, Worthington E, et al. Cognitive rehabilitation for memory deficits after stroke. Cochrane Database Syst Rev. 2016:9(9):1-63. https://doi.org/10.1002/14651858.CD002293.pub3
  33. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and aging. 2002;17(1):85.
  34. Lustig C, Shah P, Seidler R, et al. Aging, training, and the brain: a review and future directions. Neuropsychology Review. 2009;19:504-22. https://doi.org/10.1007/s11065-009-9119-9
  35. Belleville S. Cognitive training for persons with mild cognitive impairment. Internat Psychoger. 2008; 20(1):57-66. https://doi.org/10.1017/S104161020700631X
  36. Engvig A, Fjell AM, Westlye LT, et al. Memory training impacts short-term changes in aging white matter: A longitudinal diffusion tensor imaging study. Hum Brain Map. 2012;33(10):2390-406. https://doi.org/10.1002/hbm.21370
  37. Anguera JA, Boccanfuso J, Rintoul JL, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97-101. https://doi.org/10.1038/nature12486