DOI QR코드

DOI QR Code

Investigating the "pendulum column" isolator with flexible piers

  • Abdallah Azizi (Department of Structural Engineering, University of Tabriz) ;
  • Majid Barghian (Department of Structural Engineering, University of Tabriz)
  • Received : 2023.03.27
  • Accepted : 2023.04.28
  • Published : 2023.06.25

Abstract

Various methods have been used to strengthen structures against earthquakes. Isolator systems are among the methods to control the structure's response. Instead of increasing the strength and capacity of the structure, these systems react to earthquakes. In this paper, an isolator system was investigated with the flexible piers of ∨ and ∧ elements, which were perpendicular to each other and connected by a rod hinged at both ends. The behavior of the isolator system was studied. Many structures have non-rigid connections; the effect of this issue was considered in the pendulum column's performance in this paper. Its mathematical equations were derived, solved with MATLAB software, and compared with ABAQUS results. Later on, the isolator system was investigated during different earthquakes. The results show that this mechanism is suitable as an isolator. The period was found to be longer in the flexible pier form. The flexible piers have an influential role in the system's response by reducing the system's stiffness considerably. Among the different damping ratios, those with more than 15% had better results. Finally, the tested model verified the theory.

Keywords

References

  1. Auad, G., Castaldo, P. and Almazan, J.L. (2022), "Seismic reliability of structures equipped with LIR-DCFP bearings in terms of superstructure ductility and isolator displacement", Earthq. Eng. Struct. Dyn., 51(13), 3171-3214. https://doi.org/10.1002/eqe.3719.
  2. Barghian, M. and Shahabi, A.B. (2007), "A new approach to pendulum base isolation", Struct. Control Health Monit., 14, 177-185. https://doi.org/10.1002/stc.115.
  3. Castaldo, P., Palazzo, B., Alfano, G. and Palumbo, M.F. (2018), "Seismic reliability-based ductility demand for hardening and softening structures isolated by friction pendulum bearings", Struct. Control Health Monit., 25(11), e2256. https://doi.org/10.1002/stc.2256.
  4. Castaldo, P., Amendola, G., Giordano, L. and Miceli, E. (2022), "Seismic reliability assessment of isolated multi-span continuous deck bridges", Ing. Sism., 39(3), 26-51.
  5. Chen, H., Sun, Z. and Sun, L. (2011), "Active mass damper control for cable stayed bridge under construction: An experimental study", Struct. Eng. Mech., 38(2), 141-156. https://doi.org/10.12989/sem.2011.38.2.141.
  6. Cirelli, M., Gregori, J., Valentini, P.P. and Pennestri, E. (2019), "A design chart approach for the tuning of parallel and trapezoidal bifilar centrifugal pendulum", Mech. Mach. Theory, 140, 711-729. https://doi.org/10.1016/j.mechmachtheory.2019.06.030.
  7. Deringol, A.H. and Guneyisi, E.M. (2019), "Effect of friction pendulum bearing properties on behaviour of buildings subjected to seismic loads", Soil Dyn. Earthq. Eng., 125, 105746. https://doi.org/10.1016/j.soildyn.2019.105746.
  8. Gino, D., Miceli, E. and Castaldo, P. (2023), "Seismic reliability analysis of isolated deck bridges using friction pendulum devices", Proc. Struct. Integr., 44, 1435-1442. https://doi.org/10.1016/j.prostr.2023.01.184.
  9. Islam, S., Jumaat, M.J. and Zamin, M. (2011), "Seismic isolation in buildings to be a practical reality: Behavior of structure and installation technique", J. Eng. Tech. Res., 3(4), 99-117. https://doi.org/10.5897/JETR.9000075.
  10. Izumi, M. (1988), "State-of-the-art report: Base isolation and passive seismic response control", Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo, Japan, August.
  11. Kim, Y., Shahriyer, H. and Hu, J. (2022), "Seismic performance evaluation according to HSS and CFST columns of 3D frame buildings with rubber friction bearing (RFB)", Mater., 15(4), 1281. https://doi.org/10.3390/ma15041281.
  12. Kelly, J.M. (1986), "A seismic base isolation: Review and bibliography", Soil Dyn. Earthq. Eng., 5(4), 202-216. https://doi.org/10.1016/0267-7261(86)90006-0.
  13. Lin, A.N. and Shenton, III H.W. (1992), "Seismic performance of fixed base and base isolated steel frames", ASCE, J. Eng. Mech., 118(5), 921-941. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(921).
  14. Liu, K., Chen, L.X. and Cai, G.P. (2011), "Active control of a nonlinear and hysteretic building structure with time delay", Struct. Eng. Mech., 40(3), 431-451. https://doi.org/10.12989/sem.2011.40.3.431.
  15. Luco, J.E. (2014), "Effects of soil-structure interaction on seismic base isolation", Soil Dyn. Earthq. Eng., 66, 167-177. https://doi.org/10.1016/j.soildyn.2014.05.007.
  16. Lupasteanu, V., Soveja, L., Lupasteanu, R. and Chingalata, C. (2019), "Installation of a base isolation system made of friction pendulum sliding isolators in a historic masonry orthodox church", Eng. Struct., 188, 369-381. https://doi.org/10.1016/j.engstruct.2019.03.040.
  17. Monfared, H., Shirvani, A. and Nwaubani, S. (2013), "An investigation into the seismic base isolation from practical perspective", Int. J. Civil Struct. Eng., 3(3), 451-463. https://doi:10.6088/ijcser.201203013042.
  18. Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures from Theory to Practice, John Wiley & Sons, Hoboken, NJ, USA.
  19. Nanda, N. and Nath, Y. (2012), "Active control of a nonlinear and hysteretic building structure with time delay", Struct. Eng. Mech., 42(2), 211-228. https://doi.org/10.12989/sem.2012.42.2.211.
  20. Quaglini, V., Gandelli, E., Dubini, P. and Limongelli, M.P. (2017), "Total displacement of curved surface sliders under nonseismic and seismic actions: A parametric study", Struct. Control Health Monit., 24(12), e2031. https://doi.org/10.1002/stc.2031.
  21. Shah, V.M. and Soni, D.P. (2017), "Response of the double concave friction pendulum system under triaxial ground excitations", Proc. Eng., 173, 1870-1877. https://doi.org/10.1016/j.proeng.2016.12.240.
  22. Sheikh, M.N., Xiong, J. and Li, W.H. (2012), "Reduction of seismic pounding effects of base-isolated RC highway bridges using MR damper", Struct. Eng. Mech., 41(6), 791-803. https://doi.org/10.12989/sem.2012.41.6.791.
  23. Shenton, III H.W. and Lin, A.N. (1993), "Relative performance of fixed based and base isolated concrete frame", ASCE, Struct. Eng., 119(10), 2952-2968. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:10(295).
  24. Shrimali, M.K., Bharti, S.D. and Dumne, S.M. (2015), "Seismic response analysis of coupled building involving MR damper and elastomeric base isolation", Ain Shams Eng. J., 6, 457-470. https://doi.org/10.1016/j.asej.2014.12.007.
  25. Su, L., Ahmadi, G. and Tadjbakhsh, I.G. (1991), "Performance of sliding resilient-friction base-isolation system", ASCE, J. Struct. Eng., 117(1), 165-181. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(165).
  26. Thomas, T. and Mathai, A. (2016), "Study of base isolation using friction pendulum bearing system", J. Mech. Civil Eng., 2006, 19-23.
  27. Zhong, C. and Christopoulos, C. (2022), "Shear-controlling rocking-isolation podium system for enhanced resilience of high-rise buildings", Earthq. Eng. Struct. Dyn., 51(6), 1363-1382. https://doi.org/10.1002/eqe.3619.