DOI QR코드

DOI QR Code

The Effect of Plan Shape and Diagrid Angle on Structural Efficiency of Tall Buildings

  • Amirreza Ardekani (Faculty of Architecture and Urbanism, Shahid Beheshti University) ;
  • Matin Alaghmandan (Faculty of Architecture and Urbanism, Shahid Beheshti University)
  • Published : 2023.06.01

Abstract

Achieving sustainable spaces is one of the emerging trends of tall buildings regarding their significant impacts on the cities. Reducing energy consumption and material using is investigated as a widely used approach to achieve more efficient tall buildings. Defining more efficient geometries and form modifications have been adopted for this goal. In this paper the effect of plan shape and diagrid angle on structural efficiency of diagrid tall buildings have been studied. A parametric workbench is applied to generate and analyze models. The goal is to find effective form parameters resulting in more efficient forms. Respectively, all models were generated in Rhino/grasshopper architecturally and analyzed by a finite element plug-in structurally. Based on the results, steeper angles almost cause more displacements and needs to be more stiffened. it can be seen almost more sided models need less weight for the structures and it could lead to more efficient forms.

Keywords

References

  1. Alaghmandan, M., Elnimeiri, M., Krawczyk, R.J. and Buelow, P.V., 2016. Modifying tall building form to reduce the along-wind effect. CTBUH Journal, (2), pp.34-39.
  2. Ali, M. M., and Moon, K. S. (2007). Structural Developments in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review 50(3), 205-223. https://doi.org/10.3763/asre.2007.5027
  3. Ali, M. M., and Moon, K. S. (2018). Advances in Structural Systems for Tall Buildings: Emerging Developments for Contemporary Urban Giants. Buildings 8(8), 104.
  4. Amin, J. A. and Ahuja, A. K. (2010). Aerodynamic Modifications to the Shape of the Buildings: A Review of the State-of-the-Art. Asian Journal of Civil Engineering (Building and Housing) 11(4), 433-450.
  5. Ardekani, A., Dabbaghchian, I., Alaghmandan, M., Golabchi, M., Hosseini, S.M. and Mirghaderi, S.R. (2020). Parametric design of diagrid tall buildings regarding structural efficiency. Architectural Science Review, 63(1), pp.87-102. https://doi.org/10.1080/00038628.2019.1704395
  6. Asadi, E. and Adeli, H., (2017). Diagrid: An innovative, sustainable, and efficient structural system. The Structural Design of Tall and Special Buildings, 26(8), p.e1358.
  7. Asadi, E., and Adeli, H. (2018). Seismic Performance Factors for Low-to Midrise Steel Diagrid Structural Systems. The Structural Design of Tall and Special Buildings, 27(15), e1505.
  8. American Society of Civil Engineers (ASCE)/Structural Engineering Institute. Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-05, American Society of Civil Engineers, Reston, Virginia; 2006.
  9. Asghari Mooneghi, M., and Kargarmoakhar, R. (2016). Aerodynamic Mitigation and Shape Optimization of Buildings. Journal of Building Engineering 6, 225-235. https://doi.org/10.1016/j.jobe.2016.01.009
  10. Baker, W., Besjak, C., Sarkisian, M., Lee, P. and Doo, C.S. (2010). Proposed methodology to determine seismic performance factors for steel diagrid framed systems. CTBUH (Council on Tall Buildings and Urban Habitat).
  11. Boake, T. M. (2014). Diagrid Structures, Systems, Connections, Details. Bassel: Birkhauser.
  12. CTBUH. (2018, July 28.07.2018). Buildings: 875-North Michigan Avenue. Retrieved from The Sky Scraper Center: The Global Tall building database of the CTBUH: http://www.skyscrapercenter.com/building/875-north-michigan-avenue/345
  13. Holmes, J.D. (2014). Along-and cross-wind response of a generic tall building: Comparison of wind-tunnel data with codes and standards. Journal of Wind Engineering and Industrial Aerodynamics, 132, pp.136-141. https://doi.org/10.1016/j.jweia.2014.06.022
  14. Ilgin, H. E. and Gunel, M. H. (2007). The Role of Aerodynamic Modifications in the Form of Tall Buildings Against Wind Excitation. Metu Jfa, 2(24), 17-25.
  15. Khan, R., and Shinde, S. B. (2015). Analysis of Diagrid Structure in Comparison with Exterior Braced Frame Structure. PG Student, Department of Civil Engineering, Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra, India.
  16. Kim, J., and Lee, Y. H. (2010). Seismic Performance Evaluation of Diagrid System Buildings. The Structural Design of Tall and Special Buildings, 21(10), 736-749. https://doi.org/10.1002/tal.643
  17. Mele, E., Toreno, M., Brandonisio, G. and De Luca, A. (2014). Diagrid Structures for Tall Buildings: Case Studies and Design Considerations. The Structural Design of Tall and Special Buildings, 23(2), 124-145. https://doi.org/10.1002/tal.1029
  18. Mirniazmandan, S., Alaghmandan, M., Barazande, F. and Rahimianzarif, E. (2018). Mutual effect of geometric modifications and diagrid structure on structural optimization of tall buildings. Architectural science review, 61(6), pp.371-383. https://doi.org/10.1080/00038628.2018.1477043
  19. Moon, K. S. (2008)a. Optimal Grid Geometry of Diagrid Structures for Tall Buildings." Architectural Science Review, 51(3), 239-251. https://doi.org/10.3763/asre.2008.5129
  20. Moon, K. S. (2008)b. Material-saving Design Strategies for Tall Building Structures. Proceedings of the CTBUH 8th World Congress, Dubai, United Arab Emirates. Vol. 34.
  21. Moon, K. S. (2012). Sustainable Structural Design of Contemporary Tall Buildings of Various Forms. CTBUH 9th World Congress, China.
  22. Moon, K.S., Connor, J.J. and Fernandez, J.E. (2007). Diagrid structural systems for tall buildings: characteristics and methodology for preliminary design. The structural design of tall and special buildings, 16(2), pp.205-230. https://doi.org/10.1002/tal.311
  23. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., Kim, Y.C. and Bandi, E.K. (2013). Aerodynamic and flow characteristics of tall buildings with various unconventional configurations. International Journal of High-Rise Buildings, 2(3), pp.213-228. https://doi.org/10.21022/IJHRB.2013.2.3.213
  24. Sadeghi, S., and Rofooei, F. R. (2018). Quantification of the Seismic Performance Factors for Steel Diagrid Structures. Journal of Constructional Steel Research, 146(2018): 155-168. https://doi.org/10.1016/j.jcsr.2018.03.018
  25. Taranath, B. S. (2004). Wind and Earthquake Resistant Buildings: Structural Analysis and Design. Los Angeles, CA: CRC Press.
  26. Taranath, B. S. (2016). Structural Analysis and Design of Tall Buildings: Steel and Composite Construction. Boca Raton, FL: CRC Press.
  27. Tomei, V., Imbimbo, M. and Mele, E. (2018). Optimization of structural patterns for tall buildings: The case of diagrid. Engineering Structures, 171, pp.280-297. https://doi.org/10.1016/j.engstruct.2018.05.043
  28. Xie, J. (2014). Aerodynamic optimization of super-tall buildings and its effectiveness assessment. Journal of Wind Engineering and Industrial Aerodynamics, 130, pp.88-98. https://doi.org/10.1016/j.jweia.2014.04.004