DOI QR코드

DOI QR Code

Time-frequency domain characteristics of intact and cracked red sandstone based on acoustic emission waveforms

  • Yong Niu (Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing University) ;
  • Jinguo Wang (School of Earth Science and Engineering, Hohai University) ;
  • Yunjin Hu (Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing University) ;
  • Gang Wang (Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing University) ;
  • Bolong Liu (Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing University)
  • 투고 : 2022.05.19
  • 심사 : 2023.04.18
  • 발행 : 2023.07.10

초록

This study conducts uniaxial compression tests on intact and single crack-contained rocks to investigate the time-frequency domain characteristics of acoustic emission (AE) signals monitored during the deformation failure process. A processing approach, short-time Fourier transform (STFT), is performed to obtain the evolution characteristics of time-frequency domain of AE signals. The AE signal modes at different deformation stages of rocks are different. Five modes of AE signal are observed during the cracking process of rocks. The evolution characteristics of time-frequency domain of AE signals processed by STFT can be utilized to evaluate the damage process of rocks. The difference of time-frequency domain characteristics between intact and cracked rocks is comparatively analyzed. The distribution characteristics of frequency changing from a single band-shaped cluster to multiple band-shaped clusters can be regarded as an early warning information of damage and failure of rocks. Meanwhile, the attenuation of frequency enables the exploration of rock failure trends.

키워드

과제정보

The research described in this paper was financially supported by the Shaoxing Basic Public Welfare Planning Project (Grant Nos. 2022A13004), the National Natural Science Foundation of China (Grant No. 41977256), the Zhejiang Natural Science Foundation (Grant No. LHZ21D020001) and the Scientific Research Fund Project of Shaoxing University (Grant No. 2021LG014).

참고문헌

  1. Benson, P.M., Vinciguerra, S., Meredith, P.G. and Young, R.P. (2010), "Spatio-temporal evolution of volcano seismicity: a laboratory study", Earth Planet. Sci. Lett., 297(1-2), 315-323. https://doi.org/10.1016/j.epsl.2010.06.033.
  2. Berto, F. and Lazzarin, P. (2014), "Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches", Mat. Sci. Eng. R., 75, 1-48. https://doi.org/10.1016/j.mser.2013.11.001.
  3. Berto, F., Lazzarin, P. and Ayatollahi, M.R. (2013), "Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading", Fatigue Fract. Eng. Mater. Struct., 36(9), 942-955. https://doi.org/10.1111/ffe.12057.
  4. Cai, J.G. and Zhao, J. (2000), "Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses", Int. J. Rock Mech. Min. Sci., 37(4), 661-682. https://doi.org/10.1016/S1365-1609(00)00013-7.
  5. Deng, Z.H., Wang, J.W., Liang, X.Y. and Liu, N. (2020), "Function extension based real-time wavelet de-noising method for projectile attitude measurement", Sensors., 20(1), 200. https://doi.org/10.3390/s20010200.
  6. Du, K., Li, X.F., Tao, M. and Wang, S.F. (2020), "Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests", Int. J. Rock Mech. Min. Sci., 133, 104411. https://doi.org/10.1016/j.ijrmms.2020.104411.
  7. Dinmohammadpour, M., Nikkhah, M., Goshtasbi, K. and Ahangari, K. (2022), "Application of wavelet transform in evaluating the Kaiser effect of rocks in acoustic emission test", Measurement., 192, 110887. https://doi.org/10.1016/j.measurement.2022.110887.
  8. Du, K., Sun, Y., Zhou, J., Khandelwal, M. and Gong, F.Q. (2022), "Mineral Composition and Grain Size Effects on the Fracture and Acoustic Emission (AE) Characteristics of Rocks Under Compressive and Tensile Stress", Rock Mech. Rock Eng., 55(10),6445-6474. https://doi.org/10.1007/s00603-022-02980-y.
  9. Huang, J., Qin, C.Z., Niu, Y., Li, R., Song, Z.L. and Wang, X.D. (2022), "A method for monitoring acoustic emissions in geological media under coupled 3-D stress and fluid flow", J. Petrol. Sci. Eng., 211, 110227. https://doi.org/10.1016/j.petrol.2022.110227.
  10. He, M.C., Miao, J.L. and Feng, J.L. (2010), "Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions", Int. J. Rock Mech. Min. Sci., 47(2), 286-298. https://doi.org/10.1016/j.ijrmms.2009.09.003.
  11. Kong, F.M., Xue, Y.G., Qiu, D.H., Li, Z.Q., Chen, Q.Q. and Song, Q. (2021), "Impact of grain size or anisotropy on correlations between rock tensile strength and some rock index properties", Geomech. Eng., 27(2), 131-150. https://doi.org/10.12989/gae.2021.27.2.131.
  12. Kim, J.W., Chong, S.H. and Cho, G.C. (2022), "Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass", Geomech. Eng., 30(5), 449-460. https://doi.org/10.12989/gae.2022.30.5.449.
  13. Liu, L.W., Li, H.B., Li, X.F., Wu, D. and Zhang, G.K. (2021), "Underlying mechanisms of crack initiation for granitic rocks containing a single pre-existing flaw: Insights from Digital Image Correlation (DIC) Analysis", Rock Mech. Rock Eng., 54(2): 857-873. https://doi.org/10.1007/s00603-020-02286-x.
  14. Li, X.L., Chen, S.J., Liu, S.M. and Li, Z.H. (2021), "AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform", J. Cent. South Univ., 28, 1843-1856. https://doi.org/10.1007/s11771-021-4734-6.
  15. Liu, X.L., Liu, Z., Li, X.B., Gong, F.Q. and Du, K. (2020), "Experimental study on the effect of strain rate on rock acoustic emission characteristics", Int. J. Rock Mech. Min. Sci., 133, 104420. https://doi.org/10.1016/j.ijrmms.2020.104420.
  16. Liu, J.P., Li, Y.H., Xu, S.D., Xu, S., Jin, C.Y. and Liu, Z.S. (2015), "Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression", Eng. Fract. Mech., 135, 206-218. https://doi.org/10.1016/j.engfracmech.2015.01.006.
  17. Lin, P., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple hoes", Int. J. Rock Mech. Min. Sci., 77, 313-237. https://doi.org/10.1016/j.ijrmms.2015.04.017.
  18. Lu, C.P., Dou, L.M., Liu, H., Liu, H.S., Liu, B. and Du, B.B. (2012), "Case study on microseismic effect of coal and gas outburst process", Int. J. Rock Mech. Min. Sci., 53, 101-110. https://doi.org/10.1016/j.ijrmms.2012.05.009.
  19. Li, L.R., Deng, J.H., Zheng, L. and Liu, J.F. (2017), "Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests", Rock Mech. Rock Eng., 50(5), 1337-1346. https://doi.org/10.1007/s00603-016-1162-2.
  20. Miao, S.T., Pan, P.Z., Zhao, X.G., Shao, C.Y. and Yu, P.Y. (2021), "Experimental Study on Damage and Fracture Characteristics of Beishan Granite Subjected to High-temperature Treatment with DIC and AE Techniques", Rock Mech. Rock Eng., 54(2), 721-743. https://doi.org/10.1007/s00603-020-02271-4.
  21. Moradian, Z., Einstein, H.H. and Ballivy, G. (2016), "Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals", Rock Mech. Rock Eng., 49(3), 785-800. https://doi.org/10.1007/s00603-015-0775-1.
  22. Niu, Y. and Zhou, X.P. (2021), "Forecast of time-of-instability in rocks under complex stress conditions using spatial precursory AE response rate", Int. J. Rock Mech. Min. Sci., 147, 104908. https://doi.org/10.1016/j.ijrmms.2021.104908.
  23. Niu, Y., Wang J.G., Wang, X.K., Hu, Y.J., Zhang J.Z., Zhang R.R. and Hu Z.J. (2023a) "Numerical study on cracking behaviors and fracture failure mechanism of flawed rock materials under uniaxial compression", Fatigue Fract. Eng. Mater. Struct., 1-16. https://doi.org/10.1111/FFE.13983.
  24. Niu, Y., Hu, Y.J. and Wang, J.G. (2023b), "Cracking characteristics and damage assessment of filled rocks using acoustic emission technology", Int. J. Geomech., 23(4), 04023013. https://doi.org/10.1061/IJGNAI.GMENG-8034.
  25. Patricia, R. and Celestino, T.B. (2019), "Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks", Eng. Fract. Mech., 210, 54-69. https://doi.org/10.1016/j.engfracmech.2018.06.027.
  26. Pakzad, R., Wang, S.Y. and Sloan, S. (2018), "Numerical study of the failure response and fracture propagation for rock specimens with preexisting flaws under compression", Int. J. Geomech., 18(7), 04018070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001172.
  27. Shukla, R., Ranijith, P.G., Choi, S.K., Haque, A., Yellishetty, M. and Hong, L. (2013), "Mechanical behavior of reservoir rock under brine saturation", Rock Mech. Rock Eng., 46(1), 83-93. https://doi.org/10.1007/s00603-012-0246-x.
  28. Shi, H., Zhang, H.Q. and Song, L. (2020), "Evolution of sandstone shear strength parameters and its mesoscopic", Geomech. Eng., 20(1), 29-41. https://doi.org/10.12989/gae.2020.20.1.029.
  29. Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
  30. Triantis, D. and Kourkoulis, S.K. (2018), "An alternative approach for representing the data provided by the acoustic emission technique", Rock Mech. Rock Eng., 51(8), 2433-2438. https://doi.org/10.1007/s00603-018-1494-1.
  31. Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014), "Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission", Ultrasonics., 54(1), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015.
  32. Wang, Y.T., Zhou, X.P. and Shou, Y.D. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019.
  33. Wong, L.N.Y. and Xiong, Q.Q. (2018), "A method for multiscale interpretation of fracture processes in carrara marble specimen containing a single flaw under uniaxial compression", J. Geophys. Res-Sol. Ea., 123(8), 3459-6490. https://doi.org/10.1029/2018JB015447.
  34. Wang, Y.T., Zhou, X.P., Wang, Y. and Shou, Y.D. (2018), "A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022.
  35. Wang, Y.S., Deng, J.H., Li, L.R. and Zhang, Z.H. (2019), "Micro-failure analysis of direct and flat loading Brazilian tensile tests", Rock Mech. Rock Eng., 52(11), 4175-4187. https://doi.org/10.1007/s00603-019-01877-7.
  36. Wong, L.N.Y. and Einstein, H.H. (2009), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
  37. Yang, S.Q., Jing, H.W., Huang, Y.H., Ranjith, P.G. and Jiao, Y.Y. (2014), "Fracture mechanical behavior of red sandstone containing a single fissure and two parallel fissures after exposure to different high temperature treatments", J. Struct. Geol., 69, 245-264. https://doi.org/10.1016/j.jsg.2014.10.014.
  38. Zheng, Q.Q., Xu, Y., Hu, H., Qian, J.W., Ma, Y. and Gao, X. (2021), "Quantitative damage, fracture mechanism and velocity structure tomography of sandstone under uniaxial load based on acoustic emission monitoring technology", Constr. Build. Mater., 272, 121911. https://doi.org/10.1016/j.conbuildmat.2020.121911.
  39. Zhao, J.S., Jiang, Q., Lu, J.F., Chen, B.R., Pei, S.F. and Wang, Z.L. (2022), "Rock fracturing observation based on microseismic monitoring and borehole imaging: In situ investigation in a large underground cavern under high geo-stress", Tunn. Undergr. Sp. Tech., 126, 104549. https://doi.org/10.1016/j.tust.2022.104549.
  40. Zhou, X.P. and Zhang, J.Z. (2021), "Damage progression and acoustic emission in brittle failure of granite and sandstone", Int. J. Rock Mech. Min. Sci., 143, 104789. https://doi.org/10.1016/j.ijrmms.2021.104789.
  41. Zhang, J.Z., Zhou, X.P., Zhu, J.Y., Xian, C. and Wang, Y.T. (2018), "Quasi-static fracturing in double-flawed specimens under uniaxial loading: The role of strain rate", Int. J. Fract., 211(1-2), 75-102. https://doi.org/10.1007/s10704-018-0277-8.
  42. Zhou, X.P., Niu, Y., Zhang, J.Z., Shen, X.C., Zheng, Y. and Berto, F. (2019), "Experimental study on effects of freeze-thaw fatigue damage on the cracking behaviors of sandstone containing two unparallel fissures", Fatigue Fract. Eng. Mater. Struct., 42(6), 1322-1340. https://doi.org/10.1111/ffe.12987.
  43. Zhou, X.P., Lian, Y.J., Wong, L.N.Y. and Berto, F. (2018), "Understanding the fracture behavior of brittle and ductile multi-flawed rocks by uniaxial loading by digital image correlation", Eng. Fract. Mech., 199, 438-460. https://doi.org/10.1016/j.engfracmech.2018.06.007.
  44. Zhang, R., Dai, F., Gao, M.Z., Xu, N.W. and Zhang, C.P. (2015), "Fractal analysis of acoustic emission during uniaxial and triaxial loading of rock", Int. J. Rock Mech. Min. Sci., 79, 241-249. https://doi.org/10.1016/j.ijrmms.2015.08.020.
  45. Zheng, Z.H., Deng, J.H., Zhu, J.B. and Li, L.R. (2018), "An experimental investigation of the failure mechanisms of jointed and intact marble under compression based on quantitative analysis of acoustic emission waveforms", Rock Mech. Rock Eng., 51(7), 2299-2307. https://doi.org/10.1007/s00603-018-1484-3.
  46. Zhang, J., Peng, W.H., Liu, F.Y., Zhang, H.X. and Li, Z.J. (2016), "Monitoring rock failure processes using the hilbert-huang transform of acoustic emission signals", Rock Mech. Rock Eng., 49(2), 427-442. https://doi.org/10.1007/s00603-015-0755-5.
  47. Zhao, J., Zhao, X.B. and Cai, J.G. (2006), "A further study of P-wave attenuation across parallel fractures with linear deformational behaviour", Int. J. Rock Mech. Min. Sci., 43(5), 776-788. https://doi.org/10.1016/j.ijrmms.2005.12.007.
  48. Zhao, W., Huang, R. and Yan, M. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 757-767. https://doi.org/10.12989/gae.2015.8.6.757.
  49. Zhu, X. and Liu, W. (2018), "The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation", Geomech. Eng., 16(2), 195-204. https://doi.org/10.12989/gae.2018.16.2.195.