DOI QR코드

DOI QR Code

Assessing the long-term durability and degradation of rocks under freezing-thawing cycles

  • Seyed Zanyar Seyed Mousavi (Department of Mining Engineering, Faculty of Engineering, University of Kurdistan) ;
  • Mohammad Rezaei (Department of Mining Engineering, Faculty of Engineering, University of Kurdistan)
  • 투고 : 2022.05.23
  • 심사 : 2023.05.11
  • 발행 : 2023.07.10

초록

In this research, the degradation rate of physical properties of the Angouran pit bedrock (calc-schist) is first investigated under the specific numbers of freeze-thaw (F-T) cycles. Then, the durability of calc-schist specimens against the F-T cycle number (N) is examined considering the mechanical parameters, and using the decay function and half-time techniques. For this purpose, point load strength (IS(50)), second durability index (Id2), Brazilian tensile strength (BTS), and compressive (VP) and shear (VS) wave velocities of calc-schist specimens are measured after 0, 7, 15, 40, and 75 N. For comparing the degradation rate of mechanical properties of available rock types on the Angouran mine walls, these tests are also carried out on the limestone and amphibolite schist specimens beside the calc-schist. According to test results, the exponential regression models are developed between the mechanical parameters of rock specimen's and N variable. Also, the long-term durability of each rock type versus N is studied using the decay function and half-time techniques. Results indicated that the degradation rate differs for the above rock types in which amphibolite schist and calc-schist specimens have the highest and least resistance against the N, respectively. The obtained results from this study can play a key role in the optimal design of the mine's final walls.

키워드

Acknowledgement

The authors would like to express their thanks to the Angouran mine staff and the rock mechanics laboratory managers of the Shahid Bahonar University of Kerman, the University of Kurdistan, and Amirkabir University of Technology for their supports during the sample preparation and testing.

References

  1. Altindag, R., Alyildiz, I.S. and Onargan, T. (2004), "Mechanical property degradation of ignimbrite subjected to recurrent freeze-thaw cycles", Int. J. Rock Mech. Min., 41(6), 1023-1028. https://doi.org/10.1016/j.ijrmms.2004.03.005.
  2. Asadizadeh, M. and Rezaei, M. (2021) "Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach", Int. J. Geotech. Eng., 15(10), 1312-1324. https://doi.org/10.1080/19386362.2019.1596610.
  3. ASTM (2001), "Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate", ASTM International, Annual Book, USA.
  4. Binal, A., Kasapoglu, K.E. and Gokceoglu, C. (1984), "Variation of some physical and mechanical properties of the volcano-sedimentary rocks around Eskisehir-Yazilikaya under freezing-thawing effect", Earth Sci. J., 20, 41-54.
  5. Cheng, S., Wang, Q., Fu, H., Wang, J., Han, Y., Shen, J. and Lin, S. (2021), "Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil", Geomech. Eng., 27(4), 309-322. https://doi.org/10.12989/gae.2021.27.4.309.
  6. Franklin, J.A. and Chandra R. (1972), "The slake durability test". Int. J. Rock Mech. Min. Sci., 9(3), 325-328. https://doi.org/10.1016/0148-9062(72)90001-0.
  7. Gamble, J.C. (1971), "Durability-plasticity classification of shales and other argillaceous rocks". PhD Thesis, University of Illinois Urbana-Champaign, Champaign, IL, United States.
  8. Han, T., Shi, J. and Cao, X. (2016), "Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze-thaw cycles", Rock Mech. Rock Eng., 49(11), 4245-4255. https://doi.org/10.1007/s00603-016-1028-7.
  9. Huang, S., Liu, Q., Cheng, A. and Liu, Y. (2018), "A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application", Cold Reg. Sci. Technol., 145, 142-150. https://doi.org/10.1016/j.coldregions.2017.10.015.
  10. ISRM (1981), "Rock Characterization, Testing and Monitoring: ISRM Suggested Methods", Pergamon Press, Oxford, USA.
  11. ISRM (2007) "The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006", Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group Ankara, Turkey, 628 p.
  12. Jamshidi, A., Nikudel, M.R. and Khamehchiyan, M. (2013), "Predicting the long-term durability of building stones against freeze - thaw using a decay function model", Cold Reg. Sci. Technol., 92, 29-36. https://doi.org/10.1016/j.coldregions.2013.03.007.
  13. Jamshidi, A., Reza, M. and Khamehchiyan, M. (2016), "Evaluation of the durability of Gerdoee travertine after freeze-thaw cycles in fresh water and sodium sulfate solution by decay function models". Eng. Geol., 202, 36-43. https://doi.org/10.1016/j.enggeo.2016.01.004.
  14. Karaca, Z., Hamdi, A., Elci, H. and Pamukcu, C. (2010), "Effect of freeze-thaw process on the abrasion loss value of stones". Int. J. Rock Mech. Min. Sci., 47(7), 1207-1211. https://doi.org/10.1016/j.ijrmms.2010.07.003.
  15. Ke, B., Zhou, K., Xu, C., Deng, H., Li, J. and Bin, F. (2018), "Dynamic mechanical property deterioration model of sandstone caused by freeze-thaw weathering", Rock Mech. Rock Eng., 51(9), 2791-2804. https://doi.org/10.1007/s00603-018-1495-0.
  16. Khanlari, G. and Abdilor Y. (2015), "Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran", Bull. Eng. Geol. Environ., 74(4), 1287-300. https://doi.org/10.1007/s10064-014-0691-8.
  17. Liu, C., Deng, H., Chen, X., Xiao, D. and Li, B. (2020), "Impact of Rock Samples Size on the Microstructural Changes Induced by Freeze-Thaw Cycles". Rock Mech. Rock Eng., 53, 5293-5300. https://doi.org/10.1007/s00603-020-02201-4.
  18. Moon, J.S., An, J.W., Kim, H.K., Lee, J.G. and Lattner, T. (2022), "Evaluation criteria for freezing and thawing of tunnel concrete lining according to theoretical and experimental analysis", Geomech. Eng., 29(3), 349-357. https://doi.org/10.12989/gae.2022.29.3.349.
  19. Mutluturk, M., Altindag, R. and Turk, G. (2004), "A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling". Int. J. Rock Mech. Min. Sci., 41(2), 237-244. https://doi.org/10.1016/S1365-1609(03)00095-9.
  20. Rezaei, M. (2018) "Indirect measurement of the elastic modulus of intact rocks using the Mamdani fuzzy inference system", Measurement, 129, 319-331. https://doi.org/10.1016/j.measurement.2018.07.047.
  21. Rezaei, M. (2020) "Feasibility of novel techniques to predict the elastic modulus of rocks based on the laboratory data", Int. J. Geotech. Eng., 14, 25-34. https://doi.org/10.1080/19386362.2017.1397873.
  22. Rezaei, M. and Asadizadeh, M. (2020) "Predicting unconfined compressive strength of intact rock using new hybrid intelligent models", J. Min. Environ., 11(1), 231-246. https://doi.org/10.22044/JME.2019.8839.1774.
  23. Rezaei, M. and Ghasemi, M. (2023) "An integrated geo-statistical methodology for an optimum resource estimation of angouran underground mine", J. Min Environ., 14(2), https://doi.org/10.22044/jme.2023.12710.2308.
  24. Rezaei, M. and Nyazyan, N. (2023), "Assessment of effect of rock properties on horizontal drilling rate in marble quarry mining: field and experimental studies", J. Min. Environ., 14(1), 321-339. https://doi.org/10.22044/jme.2023.12595.2287.
  25. Rezaei, M., Koureh Davoodi, P. and Najmoddini, I. (2019), "Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions", J. Appl. Geophy., 169, 49-57. https://doi.org/10.1016/j.jappgeo.2019.04.017.
  26. Ruedrich, J., Kirchner, D. and Siegesmund, S. (2011), "Physical weathering of building stones induced by freeze-thaw action: A laboratory long-term study". Environ. Earth Sci., 63(7), 1573-1586. https://doi.org/10.1007/s12665-010-0826-6.
  27. Sardana, S., Sinha, R.K., Verma, A.K. and Singh, T.N. (2022), "Investigations into the freeze-thaw-induced alteration in microstructure and deteriorative responses of physico-mechanical properties of Himalayan rock", Bull. Eng. Geol. Environ., 81(7), 269. https://doi.org/10.1007/s10064-022-02762-4.
  28. Seyed Mousavi, S.Z. and Rezaei, M. (2022), "Correlation assessment between degradation ratios of UCS and non-destructive properties of rock under freezing-thawing cycles", Geoderma, 428, 116209. https://doi.org/10.1016/j.geoderma.2022.116209.
  29. Seyed Mousavi, S.Z., Tavakoli, H., Moarefvand, P. and Rezaei, M. (2019), "Assessing the effect of freezing-thawing cycles on the results of the triaxial compressive strength test for calc-schist rock". Int. J. Rock Mech. Min. Sci., 123, 104090. https://doi.org/10.1016/j.ijrmms.2019.104090.
  30. Seyed Mousavi, S.Z., Tavakoli, H., Moarefvand, P. and Rezaei, M. (2020), "Micro-structural, petro-graphical and mechanical studies of schist rocks under the freezing-thawing cycles". Cold Reg. Sci. Technol., 174, 103039. https://doi.org/10.1016/j.coldregions.2020.103039.
  31. Takarli, M., Prince, W. and Siddique, R. (2008), "Damage in granite under heating/cooling cycles and water freeze-thaw condition". Int. J. Rock Mech. Min. Sci., 45(7), 1164-1175. https://doi.org/10.1016/j.ijrmms.2008.01.002.
  32. Tan, X., Chen, W., Yang, J. and Cao, J. (2011), "Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles". Cold Reg. Sci. Technol., 68, 130-138. https://doi.org/10.1016/j.coldregions.2011.05.007.
  33. Tang, Z.C., Li, L., Wang, X.C. and Zou, J.P. (2020), "Influence of cyclic freezing-thawing treatment on shear behaviors of granite fracture under dried and saturated conditions". Cold Reg. Sci. Technol., 181, 103192. https://doi.org/10.1016/j.coldregions.2020.103192.
  34. Ugur, I. and Toklu, H.O. (2020) "Effect of multi-cycle freeze-thaw tests on the physico-mechanical and thermal properties of some highly porous natural stones". Bull. Eng. Geol. Environ., 79(1), 255-267. https://doi.org/10.1007/s10064-019-01540-z.
  35. Wang, P., Xu, J., Liu, S., Wang, H. and Liu, S. (2016), "Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering", Eng. Geol., 210(4), 148-157. https://doi.org/10.1016/j.enggeo.2016.06.017.
  36. Wang, W., Yang, X., Huang, S., Yin, D. and Liu, G. (2020), "Experimental study on the shear behavior of the bonding interface between sandstone and cement mortar under freeze-thaw". Rock Mech. Rock Eng., 53(7), 881-907. https://doi.org/10.1007/s00603-019-01951-0.
  37. Yavuz, H., Altindag, R., Sarac, S., Ugur, I. and Sengun, N. (2005), "Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering". Int. J. Rock Mech. Min. Sci., 43(5), 767-275. https://doi.org/10.1016/j.ijrmms.2005.12.004.
  38. Yilmaz, F. and Fidan, D. (2018), "Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite", Geomech. Eng., 14(3), 301-306. https://doi.org/10.12989/gae.2018.14.3.301.
  39. Zhang, J., Deng, H., Deng, J. and Guo, H. (2020) "Influence of freeze-thaw cycles on the degradation of sandstone after loading and unloading". Bull. Eng. Geol. Environ., 79, 1967-1977. https://doi.org/10.1007/s10064-019-01634-8.