DOI QR코드

DOI QR Code

A secondary development based on the Hoek-Brown criterion for rapid numerical simulation prediction of mountainous tunnels in China

  • Jian Zhou (Department of Civil Engineering, Hangzhou City University) ;
  • Xinan Yang (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University) ;
  • Zhi Ding (Department of Civil Engineering, Hangzhou City University)
  • Received : 2022.11.14
  • Accepted : 2023.05.16
  • Published : 2023.07.10

Abstract

To overcome the dilemma of the [BQ] method's inability to predict mountain tunnel support loads, this study is based on the Hoek-Brown criterion and previous results to obtain the connection equations from GSI scores to each parameter of the Hoek-Brown criterion and the link between the [BQ] scores and the GSI system. The equations were embedded in the Hoek-Brown criterion of FLAC6.0 software to obtain tunnel construction forecasts without destroying the in-situ stratigraphy. The feasibility of the secondary development of the Hoek-Brown criterion was verified through comparative analysis with field engineering measurements. If GSI > 45 with a confining pressure of less than 10 MPa, GSI has little effect on the critical softening factor while we should pay attention to the parameter of confining pressure when GSI < 45. The design values for each parameter are closer to the FLAC3D simulation results and the secondary development of the Hoek-Brown criterion meets the design objectives. If the Class V surrounding rock is thinned with shotcrete or the secondary lining is installed earlier, the secondary lining may act as the main load-bearing structure. The study may provide ideas for rapid prediction of mountainous tunnels in China.

Keywords

Acknowledgement

The authors acknowledge the Scientific Research Project of Zhejiang Provincial Transportation Department (2021050) for the preparation of this manuscript. This financial support is greatly appreciated.

References

  1. Alejano, L.R., Alonso, E., Rodriguez-Dono, A. and Fernandez-Manin, G. (2010), "Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek-Brown strain-softening behavior", Int. J. Rock. Mech. Min. Sci., 47(1), 150-160. https://doi.org/10.1016/j.ijrmms.2009.07.008.
  2. Arzua, J. and Alejano, L.R. (2013), "Dilation in granite during servo-controlled triaxial strength tests", Int. J. Rock. Mech. Min. Sci., 61, 43-56. https://doi.org/10.1016/j.ijrmms.2013.02.007.
  3. Ali, W., Mohammad, N. and Tahir, M. (2014), "Rock mass characterization for diversion tunnels at diamer Basha Dam, Pakistan-a design perspective", Int. J. Sci. Eng. Technol., 3(10), 1292-1296.
  4. Arzua, J., Alejano, L.R. and Walton, G. (2014), "Strength and dilation of jointed granite specimens in servo-controlled triaxial tests", Int. J. Rock. Mech. Min. Sci., 69, 93-104. https://doi.org/10.1016/j.ijrmms.2014.04.001.
  5. Bagheripour, M.H., Rahgozar, R., Pashnesaz, H. and Malekinejad, M. (2011), "A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock", Geomech. Eng., 3(1), 61-81. https://doi.org/10.12989/gae.2011.3.1.061.
  6. Bertuzzi, R., Douglas, K. and Mostyn, G. (2016), "Comparison of quantified and chart GSI for four rock masses", Eng. Geol., 202, 24-35. https://doi.org/10.1016/j.enggeo.2016.01.002.
  7. Cai, M. (2010), "Practical estimates of tensile strength and Hoek-Brown Strength Parameter m(i) of Brittle Rocks", Rock. Mech. Rock. Eng., 43(2), 167-184. https://doi.org/10.1007/s00603-009-0053-1.
  8. Cai, M., Kaiser, P.K., Tasaka, Y. and Minami, M. (2007), "Determination of residual strength parameters of jointed rock mass using the GSI system", Int. J. Rock. Mech. Min. Sci., 44, 247-265. https://doi.org/10.1016/j.ijrmms.2006.07.005.
  9. Cai, W.Q., Zhu, H.H., Liang, W.H. (2022), "Three-dimensional tunnel face extrusion and reinforcement effects of underground excavations in deep rock masses", Int. J. Rock. Mech. Min. Sci. 150, 104999. https://doi.org/10.1016/j.ijrmms.2021.104999.
  10. Campos, L.A., Ferreira, F.A., Costa, T.A.V. and Marques, E.A.G. (2020), "New GSI correlations with different RMR adjustments for an eastern mine of the Quadrilatero Ferrifero", J. S. Am. Earth. Sci., 102, 102647. https://doi.org/10.1016/j.jsames.2020.102647.
  11. Cosar, S. (2004), "Application of rock mass classification systems for future support design of the dim tunnel near Alanya", Master of Science thesis in mining engineering, Middle East Technical University, Ankara Turkey.
  12. Chinaei, F., Ahangari, K. and Shirinabadi, R. (2021), "Hoek-Brown failure criterion for damage analysis of tunnels subjected to blast load", Geomech. Eng., 26(1), 41-47. https://doi.org/10.12989/gae.2021.26.1.041.
  13. Cui, L., Sheng, Q., Zheng, J.J., Cui, Z. and Shen, Q. (2019), "Regression model for predicting tunnel strain in strain-softening rock mass for underground openings", Int. J. Rock. Mech. Min. Sci., 119, 81-97. https://doi.org/10.1016/j.ijrmms.2019.04.014.
  14. Gomes, G.J.C., Forero, J.H., Vargas, E.A. and Vrugt, J.A. (2021), "Bayesian inference of rock strength anisotropy: Uncertainty analysis of the Hoek-Brown failure criterion", Int. J. Rock. Mech. Min. Sci., 148, 104952. https://doi.org/10.1016/j.ijrmms.2021.104952.
  15. Gu, X., Chen, F.Y., Zhang, W.A., Wang, Q. and Liu, H.L. (2022), "Numerical investigation of pile responses induced by adjacent tunnel excavation in spatially variable clays", Undergr. Space, 7(5), 911-927. https://doi.org/10.1016/j.undsp.2021.09.003.
  16. Gu, X., Ou Q., Zhang W.G., Fu, J. and Hao, S.L. (2023), "A novel subroutine for estimating unsaturated slope stability considering reservoir water fluctuation in spatially variable soils", B. Eng. Geol. Environ., 82(6). https://doi.org/10.1007/s10064-022-03025-y.
  17. Han, L., Liu, H.L., Zhang, W.A., Ding, X.M., Chen, Z.X., Feng, L. and Wang, Z, Y. (2022), "Seismic behaviors of utility tunnel-soil system: with and without joint connections", Undergr. Space, 7(5), 798-811. https://doi.org/10.1016/j.undsp.2021.08.001.
  18. Hashemi, M., Moghaddas, S. and Ajalloeian, R. (2010), "Application of rock mass characterization for determining the mechanical properties of rock mass: A comparative study", Rock. Mech. Rock. Eng., 43(3), 305-320. https://doi.org/10.1007/s00603-009-0048-y.
  19. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion--2002 edition", Proceedings of the 5th North American Rock Mechanics Symposium and 17th Tunneling Association of Canada Conference, Toronto.
  20. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock. Mech. Min. Sci., 34, 1165-1186. https://doi.org/10.1016/S0148-9062(97)00305-7.
  21. Hoek, E. and Diederichs, M.S. (2006), "Empirical estimation of rock mass modulus", Int. J. Rock. Mech. Min. Sci., 43, 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005.
  22. Huang, S., Hu, S.H., Zhao, L.H. and Zeng, Z.L. (2021), "Stability analysis of deep rectangular tunnels using adaptive finite element limit analysis with Hoek-Brown failure criterion", Aba. J. Sci. Eng., 46(11), 10931-10941. https://doi.org/10.1007/s13369-021-05632-5.
  23. Industry standard compilation group of the people's Republic of China. (2015), "GB/T 50218-2014 Standard for engineering classification of rock mass", Beijing, China Planning Press.
  24. Ismael, M. and Konietzky, H. (2019), "Constitutive model for inherent anisotropic rocks: Ubiquitous joint model based on the Hoek-Brown failure criterion", Comput. Geotech., 105, 99-109. https://doi.org/10.1016/j.compgeo.2018.09.016.
  25. Irvani, I., Wilopo, W. and Karnawati, D. (2013), "Determination of nuclear power plant site in West Bangka based on rock mass rating and geological strength index", J. South. Asian. Appl. Geol., 5(2), 78-86.
  26. Jin, J.C. (2020), "A finite element implementation of the strain-softening model based on the Hoek-Brown Criterion", Eng. Mech., 37(1), 43-52. https://doi.org/1000-4750(2020)37:1<43:JYHBZZ>2.0.TX;2-D. 1000-4750(2020)37:1<43:JYHBZZ>2.0.TX;2-D
  27. Kabwe, E., Karakus, M., Chanda, E.K. (2019), "Proposed solution for the ground reaction of non-circular tunnels in an elastic-perfectly plastic rock mass", Comput. Geotech., 119, 103354. https://doi.org/10.1016/j.compgeo.2019.103354.
  28. Laderian, A. and Abaspoor, M.A. (2012), "The correlation between RMR and Q systems in parts of Iran", Tunn. Undergr. Sp. Tech., 27(1), 149-158. https://doi.org/10.1016/j.tust.2011.06.001.
  29. Li, W.T. (2012), The post-peak strain softening constitutive it equation and numerical simulation of rock, Shandong University, Jinan.
  30. Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock. Mech. Min. Sci., 43(6), 920-937. https://doi.org/0.1016/j.ijrmms.2006.02.001. 1016/j.ijrmms.2006.02.001
  31. Li, T.Z. and Yang, X.L. (2019), "Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion", Geomech. Eng., 18(3), 235-245. https://doi.org/10.12989/gae.2019.18.3.235.
  32. Morales, T., Uribe-Etxebarria, G., Uriarte, J.A. and de Valderrama, I.F. (2004), "Geomechanical characterisation of rock masses in alpine regions: the Basque arc (Basque-Cantabrian basin, northern Spain)", Eng. Geol., 71(3-4), 343-362. https://doi.org/10.1016/S0013-7952(03)00160-1.
  33. Osgoui, R. and unal, E. (2005), "Rock reinforcement design for unstable tunnels originally excavated in very poor rock mass", Proceedings of the 31st ITAAITES World Tunnel Congress, Istanbul, Turkey.
  34. Qin, S., Shao, Z.S., Yuan, B., Zheng, X.M., Zhao, N.N. and Wu, K. (2023), "A simple prediction model for mechanical response of lined tunnels incorporating yielding elements", Int. J. Appl. Mech., 15(5), 2350031. https://doi.org/10.1142/S175882512350031X.
  35. Ranjbarnia, M., Rahimpour, N. and Oreste, P. (2020), "A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion", Geomech. Eng., 22(1), 11-23. https://doi.org/ 10.12989/gae.2020.22.1.011.
  36. Sadeghi, S., Teshnizi, E.S. and Ghoreishi, B. (2020), "Correlations between various rock mass classification/characterization systems for the Zagros tunnel-W Iran", J. Mount. Sci., 17(7), 1790-1806. https://doi.org/10.1007/s11629-019-5665-7.
  37. Singh, J.L. and Tamrakar, N.K. (2013), "Rock mass rating and geological strength index of rock masses of Thopal-Malekhu River areas, central Nepal lesser Himalaya", Bull. Depart. Geol., 16, 29-42. https://doi.org/10.3126/bdg.v16i0.8882
  38. Somodi, G., Bar, N., Kovacs, L., Arrieta, M., Torok, A. and Vasarhelyi, B. (2021), "Study of rock mass rating (RMR) and geological strength index (GSI) correlations in granite, siltstone, sandstone and quartzite rock masses", Appl. Sci., 11(8), 3351. https://doi.org/10.3390/app11083351.
  39. Su, K., Zhang, Y.J., Wu, H.T. and Zhou, L. (2019), "Evolution of surrounding rock safety factor and support installation time during tunnel excavation", Chi. J. Rock. Mech. Eng., 38(1), 2964-2975.
  40. Ukritchon, B. and Keawsawasvong, S. (2019), "Stability of unlined square tunnels in Hoek-Brown rock masses based on lower bound analysis", Comput. Geotech., 105, 249-264. https://doi.org/10.1016/j.compgeo.2018.10.006.
  41. Wang, S.L., Yin, X.T., Tang, H. and Ge, X.R. (2010), "A new approach for analyzing circular tunnel in strain-softening rock masses", Int. J. Rock. Mech. Min. Sci., 47(1), 170-178. https://doi.org/10.1016/j.ijrmms.2009.02.011.
  42. Wan, T., Han, X., Su, K. and Zhu, Y.S. (2019), "Numerical simulation methods and engineering applications of FLAC3D - An in-depth analysis of FLAC3D 5.0", Beijing, China Architecture & Building Press.
  43. Wang, Y.N. (2018), "Study on strain softening mechanism and stability control of deep roadway surrounding rock", China University of Mining and Technology, Xuzhou.
  44. Wu, A.Q. and Liu, F.Z. (2012), "Advancement and application of the standard of engineering classification of rock masses", Chi. J. Rock. Mech. Eng. 31(8), 1513-1523.
  45. Wu, K. and Shao, Z.S. (2019), "Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks", J. Eng. Mech., 145(10), 04019077. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001657.
  46. Wu, K., Shao, Z.S. and Qin, S. (2020), "An analytical design method for ductile support structures in squeezing tunnels", Arch. Civ. Mech. Eng., 20(3), 91. https://doi.org/10.1007/s43452-020-00096-0.
  47. Wu, K., Shao, Z.S., Jiang, Y.L., Zhao, N.N., Qin, S. and Chu, Z.F. (2023a), "Determination of stiffness of circumferential yielding lining considering the shotcrete hardening property", Rock Mech. Rock Eng., 56(4), 3023-3036. https://doi.org/10.1007/s00603-022-03122-0.
  48. Wu, K., Sharifzadeh, M., Shao, Z.S., Zhao, N.N. and Yang, Y.Z. (2023b), "Analytical model for soft rock tunnel with large deformation using rigid and yielding lining solutions", Int. J. Geomech., 23(9). https://doi.org/10.1061/IJGNAI.GMENG-8483.
  49. Wu, K., Shao, Z.S., Sharifzadeh, M., Hong, S.Y. and Qin, S. (2022a), "Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design", J. Rock Mech. Geotech. Eng., 14(1), 144-152. https://doi.org/10.1016/j.jrmge.2021.06.016.
  50. Wu, K., Shao, Z.S., Sharifzadeh, M., Chu, Z.F. and Qin, S. (2022b), "Analytical approach to estimating the influence of shotcrete hardening property on tunnel response", J. Eng. Mech., 148(1), 04021127. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002052.
  51. Wu, K., Shao, Z.S., Qin, S., Zhao, N.N. and Chu, Z.F. (2021a), "An improved non-linear creep model for rock applied to tunnel displacement prediction", Int. J. Appl. Mech., 13(8), 2150094. https://doi.org/10.1142/S1758825121500940.
  52. Wu, K., Shao, Z.S., Qin, S., Wei, W. and Chu, Z.F. (2021b), "A critical review on the performance of yielding supports in squeezing tunnels", Tunn. Undergr. Sp. Tech., 115, 103815. https://doi.org/10.1016/j.tust.2021.103815.
  53. Xu, G.W., Gutierrez, M., Arora, K. and Wang, X. (2022), "Visco-plastic response of deep tunnels based on a fractional damage creep constitutive model", Acta. Geotech., 17(2), 613-633. https://doi.org/10.1007/s11440-021-01226-5.
  54. Yang, X.L., Zhou, T. and Li, W.T. (2018), "Reliability analysis of tunnel roof in layered Hoek-Brown rock masses", Comput. Geotech., 104, 302-309. https://doi.org/10.1016/j.compgeo.2017.12.007.
  55. Zareifard, M.R. (2020), "A new semi-numerical method for elastoplastic analysis of a circular tunnel excavated in a Hoek-Brown strain-softening rock mass considering the blast-induced damaged zone", Comput. Geotech., 122, 103476. https://doi.org/10.1016/j.compgeo.2020.103476.
  56. Zhang, Q., Huang, X., Zhu, H. and Li, J.C. (2019), "Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI)", Tunn. Undergr. Sp. Tech., 83, 73-81. https://doi.org/10.1016/j.tust.2018.09.015.
  57. Zhao, N.N., Shao, Z.S., Chen, X.Y., Yuan, B. and Wu, K. (2022a), "Prediction of mechanical response of a flexible support system supported tunnel in viscoelastic geomaterials", Arch. Civ. Mech. Eng., 22(4), 160. https://doi.org/10.1007/s43452-022-00485-7.
  58. Zhao, N.N., Shao, Z.S., Yuan, B., Chen, X.Y. and Wu, K. (2022b), "Analytical approach to the coupled effects of slope angle and seepage on shallow lined tunnel response", Int. J. Appl. Mech., 14(2), 2250003. https://doi.org/10.1142/S175882512250003X.
  59. Zhao, N.N., Shao, Z.S., Chen, X.Y., Yuan, B. and Wu, K. (2023a), "Analytical approach to estimating the influence of friction slip contact between surrounding rock and concrete lining on mechanical response of deep rheological soft rock tunnels", Appl. Math. Model., 113, 287-308. https://doi.org/10.1016/j.apm.2022.09.012.
  60. Zhao, N.N., Shao, Z.S. and Wu, K. (2023b), "Analytical approach to predicting the time-dependent response of deep soft rock tunnels considering the compressible layer and stress path effects", Int. J. Geomech., 23(6), 04023070. https://doi.org/10.1061/IJGNAI.GMENG-8099.
  61. Zhou, J. and Yang X.A. (2021), "Deformation behavior analysis of tunnels opened in various rock mass grades conditions in China", Geomech. Eng., 26(2), 191-204. https://doi.org/10.12989/gae.2021.26.2.191.
  62. Zhu, X.P. (2015), "The Secondary development of FLAC3D based on jointed rock mass damage model and its application", China University of Geosciences, Beijing.
  63. Zou, J.F., Zuo, S.Q. and Xu, Y. (2016), "Solution of strain-softening surrounding rock in deep tunnel incorporating 3D Hoek-Brown failure criterion and flow rule", Math. Probl. Eng., 7947036. https://doi.org/10.1155/2016/7947036.