DOI QR코드

DOI QR Code

Using Text Mining and Social Network Analysis to Identify Determinant Characteristics Affecting Consumers' Evaluation of Clothing Fit

텍스트 마이닝과 소셜 네트워크 분석 기법을 활용한 소비자의 의복 맞음새(Fit)평가에 영향을 미치는 특성

  • Received : 2022.09.15
  • Accepted : 2022.11.11
  • Published : 2023.03.31

Abstract

This research aimed to recognize the determinant characteristics affecting consumers' clothing fit evaluation by employing text mining and social network analysis. For this aim, we first extracted text data linked to clothing fit from 2,000 consumer reviews collected from social network services and conducted semantic network examination and CONCOR analysis. As a result, we reported that "pants" and "skirts" were the most commonly associated clothing items with consumers' clothing fit evaluation. And the length of clothing was most commonly investigated. Then, the "waist" and "hip" were the most critical body parts affecting consumers' perception of clothing fit. Further, the four keywords including "wide," "large," "short," and "long" were the most employed ones in consumer reviews when evaluating clothing fit. This study is meaningful in that it specifically recognized the structural relationship and semantic meanings of keywords relevant to consumers' evaluation of clothing fit, which could bring empirical reference information for advanced clothing fit.

본 연구의 목적은 텍스트 마이닝과 소셜 네트워크 분석을 활용한 소비자 맞음새 평가의 주요 특징을 규명하는 것이다. 이를 위해 SNS에서 수집된 소비자의 2,000여건의 의복 맞음새 평가 후기로부터 의복 맞음새 관련된 텍스트 데이터를 추출하고 의미연결망 분석과 CONCOR 분석을 수행하였다. 연구 결과, '팬츠'와 '스커트'가 많은 맞음새평가어를 공유하며 다양한 형태로 평가되는 것을 확인하였고 의복의 길이가 가장 많이 평가되었다. 인체부위 중 '허리'는 다양한 의복의 맞음새를 평가하는 가장 중요한 부분이며 의복 맞음새평가어 중 '넓은', '큰', '와이드한', '긴' 등이 가장 많이 사용되는 것으로 나타났다. 본 연구는 소비자 맞음새 평가에 사용된 언어의 구조적 관계와 의미를 구체적으로 규명하고 의복 맞음새의 향상을 위한 실증적 기초 자료를 제공하는데 의의가 있다.

Keywords

References

  1. Alexander, M., Jo Connell, L. and Beth Presley, A. (2005), Clothing fit preferences of young female adult consumers, International Journal of Clothing Science and Technology, 17(1), 52-64. https://doi.org/10.1108/09556220510577961
  2. An, H. (2017). A study on the sentiment analysis in fashion design using big data-Focused on text mining and semantic network analysis (Doctoralal dissertation) Ewha Womans University, Seoul.
  3. An, H., & Lee, I. (2016). An investigation of a sensibility evaluation method using big data in the field of design-Focusing on Hanbok related design factors, sensibility responses, and evaluation terms. Journal of the Korean Society of Clothing and Textiles, 40(6), 1034-1044. https://doi.org/10.5850/JKSCT.2016.40.6.1034
  4. An, H., & Park, M. (2017). A study on the user perception in fashion design through social media text-mining. Journal of the Korean Society of Clothing and Textiles, 41(6), 1060-1070. https://doi.org/10.5850/JKSCT.2017.41.6.1060
  5. An, H., & Park, M. (2018). A study on the evaluation of fashion design based on big data text analysis-Focus on semantic network analysis of design elements and emotional terms. Journal of the Korean Society of Clothing and Textiles, 42(3), 428-437. https://doi.org/10.5850/JKSCT.2018.42.3.428
  6. Apeagyei, P. R., & Otieno, R. (2007). Usability of pattern customising technology in the achievement and testing of fit for mass customisation. Journal of Fashion Marketing and Management: An International Journal, 11(3), 349-365.
  7. Ashdown, S. P., & DeLong, M. (1995). Perception testing of apparel ease variation. Applied Ergonomics, 26(1), 47-54. https://doi.org/10.1016/0003-6870(95)95750-T
  8. Ashdown, S. P., & O'Connell, E. K. (2006). Comparison of test protocols for judging the fit of mature women's apparel. Clothing and Textiles Research Journal, 24(2), 137-146. https://doi.org/10.1177/0887302X0602400207
  9. Cha, Y. S., Kim, J. H., Kim, J. H., Kim, S. Y., Kim, D. K., & Whang, M. C. (2012). Validity analysis of the social emotion model based on relation types in SNS. Science of Emotion and Sensibility, 15(2), 283-296.
  10. Chae, S. H., Lim, J. I., & Kang, J. (2015). A comparative analysis of social commerce and open market using user reviews in Korean mobile commerce. Journal of Intelligence and Information Systems, 21(4), 53-77. https://doi.org/10.13088/jiis.2015.21.4.053
  11. Chen, C. M. (2007). Female body characteristics related to bra fit (Doctoral Dissertation). Available from ProQuest Dissertations and Theses database.
  12. Choi, M. S. (2002). A study on the sensory evaluation of appearance and fit for basic apparel patterns. Journal of the Korean Society of Clothing and Textiles, 26(11), 1627-1637.
  13. Erev, I., & Cohen, B. L. (1990). Verbal versus numerical probabilities: Efficiency, biases, and the preference paradox. Organizational Behavior and Human Decision Processes, 45(1), 1-18. https://doi.org/10.1016/0749-5978(90)90002-Q
  14. Eun, S. Y., Joo, S. H., & Lee, K. H. (2002). A study on the visual sensibility of color combination for clothing (Part II). Journal of the Korean Society of Clothing and Textiles, 24(7), 976-986.
  15. Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in Internet shopping. Journal of Business Research, 56(11), 867-875. https://doi.org/10.1016/S0148-2963(01)00273-9
  16. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. https://doi.org/10.1016/0378-8733(78)90021-7
  17. Hong, H. S., & Jin, I. K. (2011). An exploratory study of important information on consumer reviews in internet shopping. Journal of the Korean Society of Clothing and Textiles, 35(7), 761-774. https://doi.org/10.5850/JKSCT.2011.35.7.761
  18. Jun, Y. (2019). Estimating media environments of fashion contents through semantic network analysis from social network service of global SPA brands. Journal of the Korean Society of Clothing and Textiles, 43(3), 427-439. https://doi.org/10.5850/JKSCT.2019.43.3.427
  19. Jung, H. J., & Oh, K. W. (2016). Analysis of outdoor wear consumer characteristics and leading outdoor wear brands using SNS social big data. Fashion & Textile Research Journal, 18(1), 48-62. https://doi.org/10.5805/SFTI.2016.18.1.48
  20. Kim, D. E. (2016). Psychophysical testing of garment size variation using three-dimensional virtual try-on technology. Textile Research Journal, 86(4), 365-379. https://doi.org/10.1177/0040517515591782
  21. Kim, G. A., Kim, C. K., & Kim, M. J. (2 013). An analysis of the problem for providing product information in internet shopping mall. Journal of Korea Design Forum, 38(38), 387-397.
  22. Kim, J. S. (2018). A study on the perception of fashion streaming service using text mining analysis-Focused on PROJECT ANNE. Journal of Fashion Design, 18(1), 107-118. https://doi.org/10.18652/2018.18.1.7
  23. Kim, J. S., & Na, Y. J. (2020). Online shopping: satisfaction of return services and return reasons according to types of fashion shopping malls. Science of Emotion and Sensibility, 23(1), 3-16. https://doi.org/10.14695/KJSOS.2020.23.1.3
  24. Kim, J. Y. (2009). A Study on the fit of clothes-focusing on jackets of target in USA. Journal of Korea Design Knowledge 10, 112-121.
  25. Kim, J. Y. (2010). A Study on the fit of Knitwear. Journal of Korea Design Knowledge, 13, 17-28
  26. Kim, M. K. (2009). Development of Pants Fit Prediction Algorithm Reflecting Personal Ease Preference (Doctoral dissertation). Seoul National University, Seoul.
  27. Kim, S. S., & Kim, Y. S. (2016). Study on recognitions of luxury brands by using social big data. Fashion & Textile Research Journal, 18(1), 1-14. https://doi.org/10.5805/SFTI.2016.18.1.1
  28. Kim, S. Y., & Nam, Y. J. (2012). A study on establishing of fit test conditions for slacks. Fashion & Textile Research Journal, 14(3), 454-464. https://doi.org/10.5805/KSCI.2012.14.3.454
  29. Kim, W. B., & Choo, H. J. (2019). The effects of SNS fashion influencer authenticity on follower behavior intention-Focused on the mediation effect of fanship. Journal of the Korean Society of Clothing and Textiles, 43(1), 17-32. https://doi.org/10.5850/JKSCT.2019.43.1.17
  30. Kim, Y. H., & Kim, Y. J. (2019). 사회연결망분석 [Social network analysis]. Seoul: Pakyoungsa.
  31. Kim, Y. J., & Lee, K. H. (2000). A Study on the Visual Sensibility of Clothing Pattern. Journal of the Korean Society of Clothing and Textiles, 24(6), 861-872.
  32. Kim, Y. J., & Lee, K. H. (2001). Process of the Scale in Fashion Sensibility. Science of Emotion and Sensibility, 4(1), 33-42.
  33. Kim, Y., Song, H. K., & Jang, H. (2017). Comparison of eye movement and fit rating criteria in judging pants fit between experts and novices-using eye tracking technology. Fashion & Textile Research Journal, 19(2), 230-239. https://doi.org/10.5805/SFTI.2017.19.2.230
  34. Kohn, I. L., & Ashdown, S. P. (1998). Using video capture and image analysis to quantify apparel fit. Textile Research Journal, 68(1), 17-26. https://doi.org/10.1177/004051759806800103
  35. Korea Information Society Development Institute (2019). KISDISTAT Report, 전자상거래 이용현황과 구매행태. Retrieved from https://www.kisdi.re.kr/
  36. Korean Agency for Technology and Standards (2019). KS K 0051 성인여성복의 치수. Retrieved from https://www.standard.go.kr/
  37. Kwahk, K. Y. (2017). 소셜 네트워크 분석 [Social Network Analysis]. Seoul: Chungram,
  38. Lee, A., & Lee, J. H. (2018). A study of perception of golfwear using big data analysis. Fashion & Textile Research Journal, 20(5), 533-547. https://doi.org/10.5805/SFTI.2018.20.5.533
  39. Lee, E. S., & Lim, Y. S. (2012). Exploring marketing communication strategy using Facebook in south Korea the semantic network analysis of communication messages. The Korean Journal of Advertising And Public Relations, 14(3), 124-155.
  40. Lee, J. H., Lee, J. M., Kim, W. K., & Kim, H. G. (2017). A study on perception of swimsuit using big data text-mining analysis. Korean Journal of Sport Science, 28(1), 104-116. https://doi.org/10.24985/kjss.2017.28.1.104
  41. Lee, J., & Steen, C. (2014). Technical Sourcebook for Designers (J. Lee, & Y. Cho, Trans). Seoul: Sigmapress. (original work published 2012)
  42. Lee, M. Y., & Hwang, S. J. (2013). A study on the size information presentation method of women's upper garment in internet shopping malls for the improvement of consumer satisfaction. Journal of the Korean Society of Costume, 63(3), 95-109. https://doi.org/10.7233/jksc.2013.63.3.095
  43. Lee, S. S. (2017). Network analysis methods. Seoul: Nonhyung.
  44. Lee, S. S. (2018). Network Analysis methods Applications and Limitations. Seoul: Chungram.
  45. Liu, R., Little, T., & Eugene, M. (2012). Evaluation of elite athletes psycho-physiological responses to compression form-fitted athletic wear in intensive exercise based on 5Ps model. Fibers and Polymers, 13(3), 380-389. https://doi.org/10.1007/s12221-012-0380-9
  46. Liu, Z., He, Q., Zou, F., Ding, Y., & Xu, B. (2019). Apparel ease distribution analysis using three-dimensional motion capture. Textile Research Journal, 89(19-20), 4323-4335. https://doi.org/10.1177/0040517519832842
  47. Meng, Y., & Choi, J. (2021). A comparative study on the subjective sensation and tactile preferences for casual shirt fabrics compared by the nationality of female university students. Science of Emotion and Sensibility, 24(1), 105-114.
  48. Na, Y. J., & Cho, G. (2002). Grouping preferred sensations of college students using semantic differential methods of sensation words. Korean Journal of the Science of Emotion and Sensibility, 5(1), 9-16.
  49. Park, E., Seo, J., & Jeong, S. (2018). Extraction of Representative Emotions to Measure Emotions Expressed by Traditional Korean Clothes (Hanbok). Science of Emotion and Sensibility, 21(2), 61-72. https://doi.org/10.14695/KJSOS.2018.21.2.61
  50. Park, J., & Lee, Y. (2014). Exploring fashion trends using network analysis. Journal of the Korean Society of Clothing and Textiles, 38(5), 611-626. https://doi.org/10.5850/JKSCT.2014.38.5.611
  51. Park, M. C., Shin, S. G., Han, K. H., & Whang, S. M. (1998). Measuring meaning of Korean adjectives and colors. Korean Journal of the Science of Emotion & Sensibility, 1(2), 1-11.
  52. Park, S. M., & An, E. J. (2014). Effects of fit-related factors and clothing evaluation criteria on clothing satisfaction. The Korean Journal of Community Living Science, 25(3), 373-382. https://doi.org/10.7856/kjcls.2014.25.3.373
  53. Pisut, G., & Jo Connell, L. (2007). Fit preferences of female consumers in the USA. Journal of Fashion Marketing and Management, 11(3), 366-379. https://doi.org/10.1108/13612020710763119
  54. Seo, H. J., & Lee, K. H. (2013). Effects of direction and evaluative contents of online reviews on consumer attitudes toward clothing products. The Research Journal of the Costume Culture, 21(3), 440-451. https://doi.org/10.29049/rjcc.2013.21.3.440
  55. Shim, H. R., Choi, M. Y., & Lee, Y. J. (2018). Influence of perceived social distance of SNS visual information on consumers' fashion style preferences. Journal of the Korean Society of Clothing and Textiles, 42(2), 327-341. https://doi.org/10.5850/JKSCT.2018.42.2.327
  56. Shin, E., & Damhorst, M. L. (2018). How young consumers think about clothing fit? International Journal of Fashion Design, Technology and Education, 11(3), 352-361. https://doi.org/10.1080/17543266.2018.1448461
  57. Shin, E., Chung, T., & Damhorst, M. L. (2020). Are negative and positive reviews regarding apparel fit influential? Journal of Fashion Marketing and Management: An International Journal, 25(1), 63-79. https://doi.org/10.1108/JFMM-02-2020-0027
  58. Song, H. K., & Ashdown, S. P. (2015). Investigation of the validity of 3-D virtual fitting for pants. Clothing and Textiles Research Journal, 33(4), 314-330. https://doi.org/10.1177/0887302X15592472
  59. Spelic, I., Rogale, D., Mihelic Bogdanic, A., Petrak, S., & Naglic, M. M. (2018). Changes in ensembles' thermal insulation according to garment's fit and length based on athletic figure. Fibers and Polymers, 19(6), 1278-1287. https://doi.org/10.1007/s12221-018-1074-8