DOI QR코드

DOI QR Code

A Study of Atmospheric-pressure Dielectric Barrier Discharge (DBD) Volume Plasma Jet Generation According to the Flow Rate

유량에 따른 대기압 유전체 전위장벽방전(DBD) 플라즈마 젯 발생에 관한 연구

  • 정병호 (남부대학교 전기공학과)
  • Received : 2023.05.22
  • Accepted : 2023.07.20
  • Published : 2023.07.28

Abstract

The bullet shape of the plasma jet using the atmospheric-pressure dielectric barrier discharge method changes depending on the applied fluid rate and the intensity of the electric field. This changes appear as a difference in spectral distribution due to a difference in density of the DBD plasma jet. It is an important factor in utilizing the plasma device that difference between the occurrence of active species and the intensity through the analysis of the spectrum of the generated plasma jet. In this paper, a plasma jet generator of the atmospheric pressure volume DBD method using Ar gas was make a prototype in accordance with the proposed design method. The characteristics jet fluid rate analysis of Ar gas was accomplished through simulation to determine the dependence of flow rate for the generation of plasma jets, and the characteristics of plasma jets using spectrometers were analyzed in the prototype system to generate optimal plasma jet bullet shapes through MFC flow control. Through the design method of the proposed system, the method of establishing the optimal plasma jet characteristics in the device and the results of active species on the EOS were verified.

유전체 전위장벽방전방식에 의한 플라즈마 젯의 블렛 형상은 인가되는 유량과 전기장의 크기에 따라 달라지고 이러한 변화는 DBD 플라즈마 젯의 밀도차이에 의한 스펙트럼 분포의 차이로 나타난다. 발생된 플라즈마 젯의 스펙트럼의 분석을 통한 활성종의 발생과 강도의 차이는 장치를 활용하는데 있어서 중요한 요소이다. 본 논문에서는 Ar가스를 이용한 대기압 볼륨 DBD방식의 플라즈마 젯 발생장치를 제안된 설계방법에 따라 구성하였다. 플라즈마 젯의 발생을 위한 유량의 의존도를 규명하기 위한 Ar가스의 유동해석을 시뮬레이션을 통해 확인하였고 프로토타입 시스템에서는 MFC를 통한 유량제어를 통해 최적의 플라즈마 젯 불렛형상을 발생시키고 발생된 플라즈마 젯의 특성을 분석하기 위해 스펙트로미터를 이용한 플라즈마 젯의 특성을 분석하였다. 제안된 시스템의 설계방법을 통한 장치에서 최적의 플라즈마 젯 형상 확립방법과 EOS 상에서 활성종에 대한 결과를 확인하였다.

Keywords

Acknowledgement

This study was supported by research funds from Nambu University, 2022.

References

  1. O Eichwald, O Ducasse, N Merbahi, M Yousfi1 & D Dubois. (2006). Effect of order fluid models on flue gas streamer dynamics. Journal of Physics D: Applied Physics, 39(1), 99. DOI : 10.1088/0022-3727/39/1/015 
  2. Ronny Brandenburg. (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology, 26(5), 1-29. DOI : 10.1088/1361-6595/aa6426 
  3. Shatha M. Al Qaseer. Mohammed K. Khalaf. & Serwa I.Salih. (2021). Optimal Power of Atmospheric Pressure Plasma Jet with a Simple DBD Configuration for Biological Application, Journal of Physics: Conference Series, 2IVCPS 2021, 1-15. DOI : 10.1088/1742-6596/1999/1/012058 
  4. B L Sands, B N Ganguly, & K Tachibana. (2008). A streamer-like atmospheric pressure plasma jet. Appl. Phys. Lett, 92 (15), 151503. DOI : 10.1063/1.2909084 
  5. M. Babija, T. Gotszalka, Z.W. Kowalskia, K. Nitscha, J. Silberringb & M. Smoluchb. (2014). Atmospheric Pressure Plasma Jet for Mass Spectrometry. Proc. of the 8th International Conference NEET 2013, Zakopane, Poland. 1260-1262. DOI : 10.12693/APhysPolA.125.1260 
  6. C. Tendero, C. Tixiera, P. Tristanta, J. Desmaisona & P. Leprince. (2006). Atmospheric pressure plasmas: A review. Atomic Spectroscopy, 61(1). 2-30. DOI : 10.1016/j.sab.2005.10.003 
  7. L. Gan, S. Zhang, D. Poorun, D. Liu, X. Lu, M. He, X. Duan & H. Chen, (2018). Medical applications of nonthermal atmospheric pressure plasma in dermatology, J. Deutschen Dermatol. Gesellschaft, 16(1). 7-13. DOI : 10.1111/ddg.13373 
  8. Sherlie Portugal1, Subrata Roy & Jenshan Lin1, (2017). Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air, Scientific reports, 7(1). 1-11. DOI : 10.1038/s41598-017-06038-w 
  9. Lee, W. Y. et al. (2013). Characteristics of Plasma Discharge according to the Gas-flow Rate in the Atmospheric Plasma Jets. Journal of the Korean Vacuum Society. 22(3), 111-118. DOI : 10.5757/jkvs.2013.22.3.111 
  10. Bishwa Chandra Adhikari Pradeep Lamichhane Jun Sup Lim Linh N. Nguyen & Eun Ha Choi, (2021). Generation of reactive species by naturally sucked air in the Ar plasma jet, Results in Physics, 22, 103911. DOI : 10.1016/j.rinp.2021,104863 
  11. Ju-hoon Park, Jeong-sook Park, Jae-hyeouk Lee & Byeong-ho Jeong. (2022). Space Sterilization Effect Through High-Density Plasma Ozone Using DBD Device, Journal of Electrical Engineering & Technology, 17(5), 2771-2778. DOI : 10.1007/s42835-022-01165-5 
  12. Park, J. H., Park, J. S., Lee, J. H., & Jeong, B. H. (2022). Space Sterilization Effect Through High-Density Plasma Ozone Using DBD Device. Journal of Electrical Engineering & Technology, 17(5), 2771-2778. DOI : 10.1007/s42835-022-01165-5 
  13. Kyoung-Bo Kim, Jongpil Lee, Moojin Kim. (2022). Development of CNT Coating Process using Argon Atmospheric Plasma . Journal of Industrial Convergence, 20(10), 33-38. DOI : 10.22678/JIC.2022.20.10.033 
  14. Shaohui Jin, Lanlan Nie1, Rusen Zhou, Jingyi Luo1 & Xinpei Lu. (2022). An Ionization-Driven Air Plasma Jet, Front. Phys., 528. DOI : 10.3389/fphy.2022.928402 
  15. Gyu Tae Bae. Hyo Jun Jang. Eun Young Jung. Ye Rin Lee. Choon-Sang Park. Jae Young Kim. & Heung-Sik Tae. (2022). Development of an Atmospheric Pressure Plasma Jet Device Using Four-Bore Tubing and Its Applications of In-Liquid Material Decomposition and Solution Plasma Polymerization, Polymers 2022, 14(22), 4917. DOI : 10.3390/polym14224917 
  16. Gritter, L. T., Crompton, J. S., & Koppenhoefer, K. C. (2017). Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications. In Proceedings of the 2017 COMSOL Conference in Boston.