DOI QR코드

DOI QR Code

Encainide, a class Ic anti-arrhythmic agent, blocks voltage-dependent potassium channels in coronary artery smooth muscle cells

  • Hongliang Li (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Yue Zhou (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Yongqi Yang (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Yiwen Zha (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Bingqian Ye (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Seo-Yeong Mun (Department of Physiology, Kangwon National University School of Medicine) ;
  • Wenwen Zhuang (Department of Physiology, Kangwon National University School of Medicine) ;
  • Jingyan Liang (Institute of Translational Medicine, Medical College, Yangzhou University) ;
  • Won Sun Park (Department of Physiology, Kangwon National University School of Medicine)
  • 투고 : 2023.03.23
  • 심사 : 2023.05.18
  • 발행 : 2023.07.01

초록

Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 μM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2021-R1F1A1045544, 2021-R1A4A1031574) and The National Natural Science Foundation of China (No. 82100413).

참고문헌

  1. Goette A, Lendeckel U. Atrial cardiomyopathy: pathophysiology and clinical consequences. Cells. 2021;10:2605.
  2. Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D. Atrial fibrillation: pathogenesis, predisposing factors, and genetics. Int J Mol Sci. 2021;23:6.
  3. Black N, D'Souza A, Wang Y, Piggins H, Dobrzynski H, Morris G, Boyett MR. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm. 2019;16:298-307. https://doi.org/10.1016/j.hrthm.2018.08.026
  4. Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev. 2014;94:609-653. https://doi.org/10.1152/physrev.00022.2013
  5. Zhang Q, Chen J, Qin Y, Wang J, Zhou L. Mutations in voltagegated L-type calcium channel: implications in cardiac arrhythmia. Channels (Austin). 2018;12:201-218. https://doi.org/10.1080/19336950.2018.1499368
  6. Vaughan Williams EM. Classification of antidysrhythmic drugs. Pharmacol Ther B. 1975;1:115-138.
  7. Antonaccio MJ, Gomoll AW, Byrne JE. Encainide. Cardiovasc Drugs Ther. 1989;3:691-710. https://doi.org/10.1007/BF01857621
  8. Luderitz B, Mletzko R, Jung W, Manz M. Combination of antiarrhythmic drugs. J Cardiovasc Pharmacol. 1991;17 Suppl 6:S48-S52. https://doi.org/10.1097/00005344-199117041-00011
  9. Soyka LF. Safety of encainide for the treatment of ventricular arrhythmias. Am J Cardiol. 1986;58:96C-103C. https://doi.org/10.1016/0002-9149(86)90111-6
  10. Li H, Zhuang W, Xiong T, Park WS, Zhang S, Zha Y, Yao J, Wang F, Yang Y, Chen Y, Cai L, Ling L, Yu D, Liang J. Nrf2 deficiency attenuates atherosclerosis by reducing LOX-1-mediated proliferation and migration of vascular smooth muscle cells. Atherosclerosis. 2022;347:1-16. https://doi.org/10.1016/j.atherosclerosis.2022.02.025
  11. Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol. 2020;319:H613-H631. https://doi.org/10.1152/ajpheart.00220.2020
  12. Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, Yuan T, Yang P, Xiong F, Zhang S, Zhou Q, Chen Z, Li J, Mo BW, Zhang H, Xiong W, Wang CY. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif. 2020;53:e12742.
  13. Tykocki NR, Boerman EM, Jackson WF. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol. 2017;7:485-581. https://doi.org/10.1002/cphy.c160011
  14. Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol. 2019;33:504-523. https://doi.org/10.1111/fcp.12461
  15. Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44:65-81. https://doi.org/10.1540/jsmr.44.65
  16. Bobi J, Garabito M, Solanes N, Cidad P, Ramos-Perez V, Ponce A, Rigol M, Freixa X, Perez-Martinez C, Perez de Prado A, Fernandez-Vazquez F, Sabate M, Borros S, Lopez-Lopez JR, Perez-Garcia MT, Roque M. Kv1.3 blockade inhibits proliferation of vascular smooth muscle cells in vitro and intimal hyperplasia in vivo. Transl Res. 2020;224:40-54. https://doi.org/10.1016/j.trsl.2020.06.002
  17. Jackson WF. KV1.3: a new therapeutic target to control vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol. 2010;30:1073-1074. https://doi.org/10.1161/ATVBAHA.110.206565
  18. An JR, Li H, Seo MS, Park WS. Inhibition of voltage-dependent K+ current in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic drug propafenone. Korean J Physiol Pharmacol. 2018;22:597-605. https://doi.org/10.4196/kjpp.2018.22.5.597
  19. An JR, Kim HW, Li H, Seo MS, Jung WK, Ha KS, Han ET, Hong SH, Firth AL, Choi IW, Park WS. Inhibition of the voltage-dependent K+  current by the class Ic antiarrhythmic drug flecainide in rabbit coronary arterial smooth muscle cells. Clin Exp Pharmacol Physiol. 2018;45:1286-1292. https://doi.org/10.1111/1440-1681.13015
  20. Li H, Zhuang W, Seo MS, An JR, Yang Y, Zha Y, Liang J, Xu ZX, Park WS. Inhibition of voltage-dependent K+  channels in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic agent lorcainide. Eur J Pharmacol. 2021;904:174158.
  21. Hasan R, Jaggar JH. KV channel trafficking and control of vascular tone. Microcirculation. 2018;25:10.1111/micc.12418.
  22. Lu Y, Hanna ST, Tang G, Wang R. Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed rectifier K(+) current in rat mesenteric artery smooth muscle cells. Life Sci. 2002;71:1465-1473. https://doi.org/10.1016/S0024-3205(02)01922-7
  23. Jaillon P. Pharmacokinetics and metabolism of encainide. Cardiovasc Drugs Ther. 1990;4 Suppl 3:561-565.  https://doi.org/10.1007/BF00357031