DOI QR코드

DOI QR Code

Antimicrobial therapies for chronic pain (part 1): analgesic mechanisms

  • Eric J. Wang (Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine) ;
  • Jay Karri (Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine) ;
  • Nuj Tontisirin (Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University) ;
  • Steven P. Cohen (Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins University School of Medicine)
  • Received : 2023.04.26
  • Accepted : 2023.06.15
  • Published : 2023.07.01

Abstract

There is increasing evidence that the relationship between chronic pain and infections is complex and intertwined. Bacterial and viral infections can cause pain through numerous mechanisms such as direct tissue damage and inflammation, the induction of excessive immunologic activity, and the development of peripheral or central sensitization. Treating infections might relieve pain by attenuating these processes, but a growing body of literature suggests that some antimicrobial therapies confer analgesic effects, including for nociceptive and neuropathic pain symptoms, and affective components of pain. The analgesic mechanisms of antimicrobials are indirect, but might be conceptualized into two broad categories: 1) the reduction of the infectious burden and associated pro-inflammatory processes; and 2) the inhibition of signaling processes (e.g., enzymatic and cytokine activity) necessary for nociception and maladaptive neuroplastic changes via off-target effects (unintended binding sites). For the former, there is evidence that symptoms of chronic low back pain (when associated with Modic type 1 changes), irritable bowel syndrome, inflammatory bowel disease, chronic pelvic pain, and functional dyspepsia might be improved after antibiotic treatment, though significant questions remain regarding specific regimens and dose, and which subpopulations are most likely to benefit. For the latter, there is evidence that several antimicrobial classes and medications exert analgesic effects independent of their reduction of infectious burden, and these include cephalosporins, ribavirin, chloroquine derivatives, rapalogues, minocycline, dapsone, and piscidin-1. This article aims to comprehensively review the existing literature for antimicrobial agents that have demonstrated analgesic efficacy in preclinical or clinical studies.

Keywords

Acknowledgement

Dr. Cohen's effort was funded in part by a grant from MIRROR, Uniformed Services University of the Health Sciences, U.S. Department of Defense, grant # HU00011920011. The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the U.S. Department of Defense or the U.S. Government.

References

  1. Cohen SP, Wang EJ, Doshi TL, Vase L, Cawcutt KA, Tontisirin N. Chronic pain and infection: mechanisms, causes, conditions, treatments, and controversies. BMJ Med 2022; 1: e000108.
  2. Brizzi KT, Lyons JL. Peripheral nervous system manifestations of infectious diseases. Neurohospitalist 2014; 4: 230-40. https://doi.org/10.1177/1941874414535215
  3. Kramer S, Baeumler P, Geber C, Fleckenstein J, Simang M, Haas L, et al. Somatosensory profiles in acute herpes zoster and predictors of postherpetic neuralgia. Pain 2019; 160: 882-94. https://doi.org/10.1097/j.pain.0000000000001467
  4. Gilligan CJ, Cohen SP, Fischetti VA, Hirsch JA, Czaplewski LG. Chronic low back pain, bacterial infection and treatment with antibiotics. Spine J 2021; 21: 903-14. https://doi.org/10.1016/j.spinee.2021.02.013
  5. Cai Z, Zhu T, Liu F, Zhuang Z, Zhao L. Co-pathogens in periodontitis and inflammatory bowel disease. Front Med (Lausanne). 2021; 8: 723719.
  6. Minerbi A, Shen S. Gut microbiome in anesthesiology and pain medicine. Anesthesiology 2022; 137: 93-108. https://doi.org/10.1097/ALN.0000000000004204
  7. Song JH. Introduction: the goals of antimicrobial therapy. Int J Infect Dis 2003; 7 Suppl 1: S1-4. https://doi.org/10.1016/S1201-9712(03)90064-6
  8. Gilbert DN, Chambers HF, Saag MS, Pavia AT, Boucher HW. The sanford guide to antimicrobial therapy 2022. 52nd ed. Antimicrobial Therapy, Inc. 2022.
  9. Crockett MT, Kelly BS, van Baarsel S, Kavanagh EC. Modic type 1 vertebral endplate changes: injury, inflammation, or infection? AJR Am J Roentgenol 2017; 209: 167-70. https://doi.org/10.2214/AJR.16.17403
  10. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, et al. Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 2013; 22: 690-6. https://doi.org/10.1007/s00586-013-2674-z
  11. Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 2013; 22: 697-707. https://doi.org/10.1007/s00586-013-2675-y
  12. Braten LCH, Rolfsen MP, Espeland A, Wigemyr M, Assmus J, Froholdt A, et al.; AIM study group. Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ 2019; 367: l5654.
  13. Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther 2018; 48: 1044-60. https://doi.org/10.1111/apt.15001
  14. Norton C, Czuber-Dochan W, Artom M, Sweeney L, Hart A. Systematic review: interventions for abdominal pain management in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46: 115-25. https://doi.org/10.1111/apt.14108
  15. Castiglione F, Rispo A, Di Girolamo E, Cozzolino A, Manguso F, Grassia R, et al. Antibiotic treatment of small bowel bacterial overgrowth in patients with Crohn's disease. Aliment Pharmacol Ther 2003; 18: 1107-12. https://doi.org/10.1046/j.1365-2036.2003.01800.x
  16. Anothaisintawee T, Attia J, Nickel JC, Thammakraisorn S, Numthavaj P, McEvoy M, et al. Management of chronic prostatitis/chronic pelvic pain syndrome: a systematic review and network meta-analysis. JAMA 2011; 305: 78-86. https://doi.org/10.1001/jama.2010.1913
  17. Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. Helicobacter pylori eradication therapy for functional dyspepsia: systematic review and meta-analysis. World J Gastroenterol 2016; 22: 3486-95. https://doi.org/10.3748/wjg.v22.i12.3486
  18. Tan VP, Liu KS, Lam FY, Hung IF, Yuen MF, Leung WK. Randomised clinical trial: rifaximin versus placebo for the treatment of functional dyspepsia. Aliment Pharmacol Ther 2017; 45: 767-76. https://doi.org/10.1111/apt.13945
  19. Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. Functional dyspepsia. Lancet 2020; 396: 1689-702. https://doi.org/10.1016/S0140-6736(20)30469-4
  20. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, et al.; faculty members of Kyoto Global Consensus Conference. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015; 64: 1353-67. https://doi.org/10.1136/gutjnl-2015-309252
  21. National Cancer Institute. NCI dictionary of cancer terms [Internet]. Bethesda (MD): National Cancer Institute; 2011. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms
  22. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 8th ed. Saunders. 2015, pp 278-92.e4.
  23. Bui T, Preuss CV. Cephalosporins. In: StatPearls [Internet]. StatPearls Publishing. 2023.
  24. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433: 73-7. https://doi.org/10.1038/nature03180
  25. Hu Y, Li W, Lu L, Cai J, Xian X, Zhang M, et al. An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats. Pain 2010; 148: 284-301. https://doi.org/10.1016/j.pain.2009.11.014
  26. Hajhashemi V, Hosseinzadeh H, Amin B. Antiallodynia and antihyperalgesia effects of ceftriaxone in treatment of chronic neuropathic pain in rats. Acta Neuropsychiatr 2013; 25: 27-32. https://doi.org/10.1111/j.1601-5215.2012.00656.x
  27. Amin B, Hajhashemi V, Hosseinzadeh H, Abnous Kh. Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat. Neuroscience 2012; 224: 15-25. https://doi.org/10.1016/j.neuroscience.2012.07.058
  28. Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 2007; 38: 177-82. https://doi.org/10.1161/01.STR.0000252091.36912.65
  29. Mohan A, Lefstein KM, Chang E. Minocycline and cephalexin in a patient with spastic neuropathic pain secondary to neurosarcoidosis. Pain Med 2021; 22: 2767-79. https://doi.org/10.1093/pm/pnab044
  30. Macaluso A, Bernabucci M, Trabucco A, Ciolli L, Troisi F, Baldini R, et al. Analgesic effect of a single preoperative dose of the antibiotic ceftriaxone in humans. J Pain 2013; 14: 604-12. https://doi.org/10.1016/j.jpain.2013.01.774
  31. Rao PS, Goodwani S, Bell RL, Wei Y, Boddu SH, Sari Y. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats. Neuroscience 2015; 295: 164-74. https://doi.org/10.1016/j.neuroscience.2015.03.038
  32. Loustaud-Ratti V, Debette-Gratien M, Jacques J, Alain S, Marquet P, Sautereau D, et al. Ribavirin: past, present and future. World J Hepatol 2016; 8: 123-30. https://doi.org/10.4254/wjh.v8.i2.123
  33. Dixit NM, Perelson AS. The metabolism, pharmacokinetics and mechanisms of antiviral activity of ribavirin against hepatitis C virus. Cell Mol Life Sci 2006; 63: 832-42. https://doi.org/10.1007/s00018-005-5455-y
  34. Abdel-Salam OM. Antinociceptive and behavioral effects of ribavirin in mice. Pharmacol Biochem Behav 2006; 83: 230-8. https://doi.org/10.1016/j.pbb.2006.01.010
  35. Milicevic I, Pekovic S, Subasic S, Mostarica-Stojkovic M, Stosic-Grujicic S, Medic-Mijacevic L, et al. Ribavirin reduces clinical signs and pathological changes of experimental autoimmune encephalomyelitis in Dark Agouti rats. J Neurosci Res 2003; 72: 268-78. https://doi.org/10.1002/jnr.10552
  36. Lavrnja I, Savic D, Bjelobaba I, Dacic S, Bozic I, Parabucki A, et al. The effect of ribavirin on reactive astrogliosis in experimental autoimmune encephalomyelitis. J Pharmacol Sci 2012; 119: 221-32. https://doi.org/10.1254/jphs.12004FP
  37. Liao SH, Li Y, Lai YN, Liu N, Zhang FX, Xu PP. Ribavirin attenuates the respiratory immune responses to influenza viral infection in mice. Arch Virol 2017; 162: 1661-9. https://doi.org/10.1007/s00705-017-3291-7
  38. Romeo-Guitart D, Casas C. NeuroHeal treatment alleviates neuropathic pain and enhances sensory axon regeneration. Cells 2020; 9: 808.
  39. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019; 78: 736-45. https://doi.org/10.1136/annrheumdis-2019-215089
  40. Rempenault C, Combe B, Barnetche T, Gaujoux-Viala C, Lukas C, Morel J, et al. Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: a systematic review. Arthritis Care Res (Hoboken) 2020; 72: 36-40. https://doi.org/10.1002/acr.23826
  41. Smolen JS, Landewe RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis 2023; 82: 3-18. Erratum in: Ann Rheum Dis 2023; 82: e76.
  42. Srinivasa A, Tosounidou S, Gordon C. Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: a brand-related issue? J Rheumatol 2017; 44: 398.
  43. Khosa S, Khanlou N, Khosa GS, Mishra SK. Hydroxychloroquine-induced autophagic vacuolar myopathy with mitochondrial abnormalities. Neuropathology 2018; 38: 646-52. https://doi.org/10.1111/neup.12520
  44. Jorge A, Ung C, Young LH, Melles RB, Choi HK. Hydroxychloroquine retinopathy - implications of research advances for rheumatology care. Nat Rev Rheumatol 2018; 14: 693-703. https://doi.org/10.1038/s41584-018-0111-8
  45. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018; 14: 1435-55. https://doi.org/10.1080/15548627.2018.1474314
  46. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794-804. https://doi.org/10.4049/jimmunol.1000702
  47. Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford) 2006; 45: 703-10. https://doi.org/10.1093/rheumatology/kei282
  48. Wu SF, Chang CB, Hsu JM, Lu MC, Lai NS, Li C, et al. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res Ther 2017; 19: 183.
  49. Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16: 155-66. https://doi.org/10.1038/s41584-020-0372-x
  50. Faraone I, Labanca F, Ponticelli M, De Tommasi N, Milella L. Recent clinical and preclinical studies of hydroxychloroquine on RNA viruses and chronic diseases: a systematic review. Molecules 2020; 25: 5318.
  51. Chou AK, Chiu CC, Wang JJ, Chen YW, Hung CH. Antimalarial primaquine for spinal sensory and motor blockade in rats. J Pharm Pharmacol 2021; 73: 1513-9. https://doi.org/10.1093/jpp/rgab054
  52. Chang YJ, Liu KS, Wang JJ, Hung CH, Chen YW. Chloroquine for prolonged skin analgesia in rats. Neurosci Lett 2020; 735: 135233.
  53. Chang YJ, Liu KS, Wang JJ, Chen YW, Hung CH. Antimalarial primaquine for skin infiltration analgesia in rats. J Pharm Pharmacol 2021; 73: 206-11. https://doi.org/10.1093/jpp/rgaa021
  54. Sanchez-Chapula JA, Salinas-Stefanon E, Torres-Jacome J, Benavides-Haro DE, Navarro-Polanco RA. Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. J Pharmacol Exp Ther 2001; 297: 437-45.
  55. Lee W, Ruijgrok L, Boxma-de Klerk B, Kok MR, Kloppenburg M, Gerards A, et al. Efficacy of hydroxychloroquine in hand osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res (Hoboken) 2018; 70: 1320-5. https://doi.org/10.1002/acr.23471
  56. Kingsbury SR, Tharmanathan P, Keding A, Ronaldson SJ, Grainger A, Wakefield RJ, et al. Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis: a randomized trial. Ann Intern Med 2018; 168: 385-95. https://doi.org/10.7326/M17-1430
  57. Ronaldson SJ, Keding A, Tharmanathan P, Arundel C, Kingsbury SR, Conaghan PG, et al. Cost-effectiveness of hydroxychloroquine versus placebo for hand osteoarthritis: economic evaluation of the HERO trial. F1000Res 2021; 10: 821.
  58. Williams HJ, Egger MJ, Singer JZ, Willkens RF, Kalunian KC, Clegg DO, et al. Comparison of hydroxychloroquine and placebo in the treatment of the arthropathy of mild systemic lupus erythematosus. J Rheumatol 1994; 21: 1457-62.
  59. Kedor C, Detert J, Rau R, Wassenberg S, Listing J, Klaus P, et al. Hydroxychloroquine in patients with inflammatory and erosive osteoarthritis of the hands: results of the OA-TREAT study-a randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. RMD Open 2021; 7: e001660.
  60. Marti-Carvajal A, Ramon-Pardo P, Javelle E, Simon F, Aldighieri S, Horvath H, et al. Interventions for treating patients with chikungunya virus infection-related rheumatic and musculoskeletal disorders: a systematic review. PLoS One 2017; 12: e0179028.
  61. Rodrigo C, Herath T, Wickramarachchi U, Fernando D, Rajapakse S. Treatment of chikungunya-associated joint pain: a systematic review of controlled clinical trials. Trans R Soc Trop Med Hyg 2022; 116: 889-99. https://doi.org/10.1093/trstmh/trac045
  62. Eisen D. Hydroxychloroquine sulfate (Plaquenil) improves oral lichen planus: an open trial. J Am Acad Dermatol 1993; 28: 609-12. https://doi.org/10.1016/0190-9622(93)70082-5
  63. Yeshurun A, Bergman R, Bathish N, Khamaysi Z. Hydroxychloroquine sulphate therapy of erosive oral lichen planus. Australas J Dermatol 2019; 60: e109-12. https://doi.org/10.1111/ajd.12948
  64. Vermeer HAB, Rashid H, Esajas MD, Oldhoff JM, Horvath B. The use of hydroxychloroquine as a systemic treatment in erosive lichen planus of the vulva and vagina. Br J Dermatol 2021; 185: 201-3. https://doi.org/10.1111/bjd.19870
  65. Haight ES, Johnson EM, Carroll IR, Tawfik VL. Of mice, microglia, and (wo)men: a case series and mechanistic investigation of hydroxychloroquine for complex regional pain syndrome. Pain Rep 2020; 5: e841.
  66. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab 2014; 19: 373-9. https://doi.org/10.1016/j.cmet.2014.01.001
  67. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274-93. https://doi.org/10.1016/j.cell.2012.03.017
  68. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868-80. https://doi.org/10.1038/nrd3531
  69. Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 2009; 36 Suppl 3: S3-17. https://doi.org/10.1053/j.seminoncol.2009.10.011
  70. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al.; RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 514-23. https://doi.org/10.1056/NEJMoa1009290
  71. Yangyun W, Guowei S, Shufen S, Jie Y, Rui Y, Yu R. Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma. Gene 2022; 809: 145992.
  72. Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab 2017; 26: 419-28.e5. https://doi.org/10.1016/j.cmet.2017.07.007
  73. Kang J, Feng D, Yang F, Tian X, Han W, Jia H. Comparison of rapamycin and methylprednisolone for treating inflammatory muscle disease in a murine model of experimental autoimmune myositis. Exp Ther Med 2020; 20: 219-26. https://doi.org/10.3892/etm.2020.8716
  74. Lilleker JB, Bukhari M, Chinoy H. Rapamycin for inclusion body myositis: targeting non-inflammatory mechanisms. Rheumatology (Oxford) 2019; 58: 375-6. https://doi.org/10.1093/rheumatology/key043
  75. Khaibullina A, Almeida LE, Wang L, Kamimura S, Wong EC, Nouraie M, et al. Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. Blood Cells Mol Dis 2015; 55: 363-72. https://doi.org/10.1016/j.bcmd.2015.08.001
  76. Busquets-Garcia A, Gomis-Gonzalez M, Guegan T, Agustin-Pavon C, Pastor A, Mato S, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 2013; 19: 603-7. https://doi.org/10.1038/nm.3127
  77. Waldner M, Fantus D, Solari M, Thomson AW. New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol 2016; 82: 1158-70. https://doi.org/10.1111/bcp.12893
  78. Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, et al. Rapamycin slows aging in mice. Aging Cell 2012; 11: 675-82. https://doi.org/10.1111/j.1474-9726.2012.00832.x
  79. Schreiber KH, Arriola Apelo SI, Yu D, Brinkman JA, Velarde MC, Syed FA, et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat Commun 2019; 10: 3194.
  80. Lv J, Li Z, She S, Xu L, Ying Y. Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Neurol Res 2015; 37: 739-43. https://doi.org/10.1179/1743132815Y.0000000052
  81. Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci 2014; 34: 830-7. https://doi.org/10.1007/s11596-014-1361-6
  82. Tateda S, Kanno H, Ozawa H, Sekiguchi A, Yahata K, Yamaya S, et al. Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. J Orthop Res 2017; 35: 93-103. https://doi.org/10.1002/jor.23328
  83. Zhang X, Jiang N, Li J, Zhang D, Lv X. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol Res 2019; 41: 52-9. https://doi.org/10.1080/01616412.2018.1531199
  84. Kwon M, Han J, Kim UJ, Cha M, Um SW, Bai SJ, et al. Inhibition of mammalian target of rapamycin (mTOR) signaling in the insular cortex alleviates neuropathic pain after peripheral nerve injury. Front Mol Neurosci 2017; 10: 79.
  85. Asante CO, Wallace VC, Dickenson AH. Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain 2010; 11: 1356-67. https://doi.org/10.1016/j.jpain.2010.03.013
  86. Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 2009; 29: 15017-27. https://doi.org/10.1523/JNEUROSCI.3451-09.2009
  87. Chen WH, Chang YT, Chen YC, Cheng SJ, Chen CC. Spinal protein kinase C/extracellular signal-regulated kinase signal pathway mediates hyperalgesia priming. Pain 2018; 159: 907-18. https://doi.org/10.1097/j.pain.0000000000001162
  88. Lyu D, Yu W, Tang N, Wang R, Zhao Z, Xie F, et al. The mTOR signaling pathway regulates pain-related synaptic plasticity in rat entorhinal-hippocampal pathways. Mol Pain 2013; 9: 64.
  89. Abdelaziz DM, Stone LS, Komarova SV. Osteolysis and pain due to experimental bone metastases are improved by treatment with rapamycin. Breast Cancer Res Treat 2014; 143: 227-37. https://doi.org/10.1007/s10549-013-2799-0
  90. Xu JT, Zhao JY, Zhao X, Ligons D, Tiwari V, Atianjoh FE, et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest 2014; 124: 592-603. https://doi.org/10.1172/JCI70236
  91. Lutz BM, Nia S, Xiong M, Tao YX, Bekker A. mTOR, a new potential target for chronic pain and opioid-induced tolerance and hyperalgesia. Mol Pain 2015; 11: 32.
  92. Zhang J, Wang Y, Qi X. Systemic rapamycin attenuates morphine-induced analgesic tolerance and hyperalgesia in mice. Neurochem Res 2019; 44: 465-71. https://doi.org/10.1007/s11064-018-2699-0
  93. Shirooie S, Sahebgharani M, Esmaeili J, Dehpour AR. In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway. J Cell Physiol 2019; 234: 3058-66. https://doi.org/10.1002/jcp.27125
  94. Nguyen LS, Vautier M, Allenbach Y, Zahr N, Benveniste O, Funck-Brentano C, et al. Sirolimus and mTOR inhibitors: a review of side effects and specific management in solid organ transplantation. Drug Saf 2019; 42: 813-25. https://doi.org/10.1007/s40264-019-00810-9
  95. Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, et al. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134: 305-10. https://doi.org/10.1016/j.phrs.2018.07.002
  96. Bastos LF, Merlo LA, Rocha LT, Coelho MM. Characterization of the antinociceptive and antiinflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol 2007; 576: 171-9. https://doi.org/10.1016/j.ejphar.2007.07.049
  97. Bastos LF, Angusti A, Vilaca MC, Merlo LA, Nascimento EB Jr, Rocha LT, et al. A novel non-antibacterial, non-chelating hydroxypyrazoline derivative of minocycline inhibits nociception and oedema in mice. Br J Pharmacol 2008; 155: 714-21. https://doi.org/10.1038/bjp.2008.303
  98. Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, et al. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain 2009; 5: 35.
  99. Li K, Fu KY, Light AR, Mao J. Systemic minocycline differentially influences changes in spinal microglial markers following formalin-induced nociception. J Neuroimmunol 2010; 221: 25-31. https://doi.org/10.1016/j.jneuroim.2010.02.003
  100. Tabassum S, Misrani A, Huo Q, Ahmed A, Long C, Yang L. Minocycline ameliorates chronic unpredictable mild stress-induced neuroinflammation and abnormal mPFC-HIPP oscillations in mice. Mol Neurobiol 2022; 59: 6874-95. https://doi.org/10.1007/s12035-022-03018-8
  101. Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2008; 601: 79-87. https://doi.org/10.1016/j.ejphar.2008.10.018
  102. Mika J, Rojewska E, Makuch W, Przewlocka B. Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience 2010; 165: 1420-8. https://doi.org/10.1016/j.neuroscience.2009.11.064
  103. Yoon SY, Patel D, Dougherty PM. Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 2012; 221: 214-24. https://doi.org/10.1016/j.neuroscience.2012.06.024
  104. Sung CS, Cherng CH, Wen ZH, Chang WK, Huang SY, Lin SL, et al. Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1β-induced thermal hyperalgesic rats. Glia 2012; 60: 2004-17. https://doi.org/10.1002/glia.22415
  105. Mei XP, Sakuma Y, Xie C, Wu D, Ho I, Kotani J, et al. Depressing interleukin-1β contributed to the synergistic effects of tramadol and minocycline on spinal nerve ligation-induced neuropathic pain. Neurosignals 2014; 22: 30-42. https://doi.org/10.1159/000355071
  106. Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, et al. Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. Br J Pharmacol 2010; 160: 1754-64. https://doi.org/10.1111/j.1476-5381.2010.00811.x
  107. Ismail CAN, Ghazali AK, Suppian R, Abd Aziz CB, Long I. Minocycline alleviates nociceptive response through modulating the expression of NR2B subunit of NMDA receptor in spinal cord of rat model of painful diabetic neuropathy. J Diabetes Metab Disord 2021; 20: 793-803. https://doi.org/10.1007/s40200-021-00820-4
  108. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 2010; 68: 360-8. https://doi.org/10.1002/ana.22082
  109. Wang HL, Liu H, Xue ZG, Liao QW, Fang H. Minocycline attenuates post-operative cognitive impairment in aged mice by inhibiting microglia activation. J Cell Mol Med 2016; 20: 1632-9. https://doi.org/10.1111/jcmm.12854
  110. Takazawa T, Horiuchi T, Orihara M, Nagumo K, Tomioka A, Ideno Y, et al. Prevention of postoperative cognitive dysfunction by minocycline in elderly patients after total knee arthroplasty: a randomized, double-blind, placebo-controlled clinical trial. Anesthesiology 2023; 138: 172-83. https://doi.org/10.1097/ALN.0000000000004439
  111. Lin CS, Tsaur ML, Chen CC, Wang TY, Lin CF, Lai YL, et al. Chronic intrathecal infusion of minocycline prevents the development of spinal-nerve ligation-induced pain in rats. Reg Anesth Pain Med 2007; 32: 209-16.
  112. Taguchi T, Katanosaka K, Yasui M, Hayashi K, Yamashita M, Wakatsuki K, et al. Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model. Pain 2015; 156: 415-27. https://doi.org/10.1097/01.j.pain.0000460334.49525.5e
  113. Cata JP, Weng HR, Dougherty PM. The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats. Brain Res 2008; 1229: 100-10. https://doi.org/10.1016/j.brainres.2008.07.001
  114. Masocha W. Paclitaxel-induced hyposensitivity to nociceptive chemical stimulation in mice can be prevented by treatment with minocycline. Sci Rep 2014; 4: 6719.
  115. Ismail CAN, Suppian R, Aziz CBA, Long I. Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF protein expression in rat spinal cord. J Diabetes Metab Disord 2019; 18: 181-90. https://doi.org/10.1007/s40200-019-00411-4
  116. Amorim D, Puga S, Braganca R, Braga A, Pertovaara A, Almeida A, et al. Minocycline reduces mechanical allodynia and depressive-like behaviour in type-1 diabetes mellitus in the rat. Behav Brain Res 2017; 327: 1-10. https://doi.org/10.1016/j.bbr.2017.03.003
  117. Miranda HF, Sierralta F, Jorquera V, Poblete P, Prieto JC, Noriega V. Antinociceptive interaction of gabapentin with minocycline in murine diabetic neuropathy. Inflammopharmacology 2017; 25: 91-7. Erratum in: Inflammopharmacology 2017; 25: 485.
  118. Bastos LF, Prazeres JD, Godin AM, Menezes RR, Soares DG, Ferreira WC, et al. Sex-independent suppression of experimental inflammatory pain by minocycline in two mouse strains. Neurosci Lett 2013; 553: 110-4. https://doi.org/10.1016/j.neulet.2013.08.026
  119. Cho IH, Chung YM, Park CK, Park SH, Lee H, Kim D, et al. Systemic administration of minocycline inhibits formalin-induced inflammatory pain in rat. Brain Res 2006; 1072: 208-14. Erratum in: Brain Res 2012; 1464: 89.
  120. Cho IH, Lee MJ, Jang M, Gwak NG, Lee KY, Jung HS. Minocycline markedly reduces acute visceral nociception via inhibiting neuronal ERK phosphorylation. Mol Pain 2012; 8: 13.
  121. Kannampalli P, Pochiraju S, Bruckert M, Shaker R, Banerjee B, Sengupta JN. Analgesic effect of minocycline in rat model of inflammation-induced visceral pain. Eur J Pharmacol 2014; 727: 87-98. https://doi.org/10.1016/j.ejphar.2014.01.026
  122. Zhang G, Zhao BX, Hua R, Kang J, Shao BM, Carbonaro TM, et al. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats. Neuropharmacology 2016; 102: 295-303. https://doi.org/10.1016/j.neuropharm.2015.11.028
  123. Abu-Ghefreh AA, Masocha W. Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naive mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord 2010; 11: 276.
  124. Song ZP, Xiong BR, Guan XH, Cao F, Manyande A, Zhou YQ, et al. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol Sin 2016; 37: 753-62. https://doi.org/10.1038/aps.2016.1
  125. Bu H, Shu B, Gao F, Liu C, Guan X, Ke C, et al. Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models. Breast Cancer Res Treat 2014; 143: 255-63. https://doi.org/10.1007/s10549-013-2807-4
  126. Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun 2014; 42: 147-56. https://doi.org/10.1016/j.bbi.2014.06.015
  127. Gajbhiye S, Bhangre A, Tripathi RK, Jalgaonkar S, Shankar A, Koli PG. Evaluation of antidepressant effect of minocycline in alcohol abstinence-induced depression model in mice. Cureus 2022; 14: e28711.
  128. Sumitani M, Ueda H, Hozumi J, Inoue R, Kogure T, Yamada Y, et al. Minocycline does not decrease intensity of neuropathic pain intensity, but does improve its affective dimension. J Pain Palliat Care Pharmacother 2016; 30: 31-5.
  129. Habibi-Asl B, Hassanzadeh K, Charkhpour M. Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth Analg 2009; 109: 936-42. https://doi.org/10.1213/ane.0b013e3181ae5f13
  130. Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun 2009; 23: 75-84. https://doi.org/10.1016/j.bbi.2008.07.005
  131. Shin DA, Kim TU, Chang MC. Minocycline for controlling neuropathic pain: a systematic narrative review of studies in humans. J Pain Res 2021; 14: 139-45. https://doi.org/10.2147/JPR.S292824
  132. Pachman DR, Dockter T, Zekan PJ, Fruth B, Ruddy KJ, Ta LE, et al. A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy: ACCRU study RU221408I. Support Care Cancer 2017; 25: 3407-16. https://doi.org/10.1007/s00520-017-3760-2
  133. Wang XS, Shi Q, Bhadkamkar NA, Cleeland CS, Garcia-Gonzalez A, Aguilar JR, et al. Minocycline for symptom reduction during oxaliplatin-based chemotherapy for colorectal cancer: a phase II randomized clinical trial. J Pain Symptom Manage 2019; 58: 662-71. https://doi.org/10.1016/j.jpainsymman.2019.06.018
  134. Wang XS, Shi Q, Mendoza T, Lin S, Chang JY, Bokhari RH, et al. Minocycline reduces chemoradiation-related symptom burden in patients with non-small cell lung cancer: a phase 2 randomized trial. Int J Radiat Oncol Biol Phys 2020; 106: 100-7. https://doi.org/10.1016/j.ijrobp.2019.10.010
  135. Martinez V, Szekely B, Lemarie J, Martin F, Gentili M, Ben Ammar S, et al. The efficacy of a glial inhibitor, minocycline, for preventing persistent pain after lumbar discectomy: a randomized, double-blind, controlled study. Pain 2013; 154: 1197-203. https://doi.org/10.1016/j.pain.2013.03.028
  136. Vanelderen P, Van Zundert J, Kozicz T, Puylaert M, De Vooght P, Mestrum R, et al. Effect of minocycline on lumbar radicular neuropathic pain: a randomized, placebo-controlled, double-blind clinical trial with amitriptyline as a comparator. Anesthesiology 2015; 122: 399-406. https://doi.org/10.1097/ALN.0000000000000508
  137. Syngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurol Sci 2014; 35: 1067-73. https://doi.org/10.1007/s10072-014-1647-2
  138. Narang T, Arshdeep, Dogra S. Minocycline in leprosy patients with recent onset clinical nerve function impairment. Dermatol Ther 2017. doi: 10.1111/dth.12404
  139. Curtin CM, Kenney D, Suarez P, Hentz VR, Hernandez-Boussard T, Mackey S, et al. A doubleblind placebo randomized controlled trial of minocycline to reduce pain after carpal tunnel and trigger finger release. J Hand Surg Am 2017; 42: 166-74. https://doi.org/10.1016/j.jhsa.2016.12.011
  140. Martins AM, Marto JM, Johnson JL, Graber EM. A review of systemic minocycline side effects and topical minocycline as a safer alternative for treating acne and rosacea. Antibiotics (Basel) 2021; 10: 757.
  141. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res 2014; 306: 103-24. https://doi.org/10.1007/s00403-013-1409-7
  142. Wolf R, Matz H, Orion E, Tuzun B, Tuzun Y. Dapsone. Dermatol Online J 2002; 8: 2.
  143. Khalilzadeh M, Shayan M, Jourian S, Rahimi M, Sheibani M, Dehpour AR. A comprehensive insight into the anti-inflammatory properties of dapsone. Naunyn Schmiedebergs Arch Pharmacol 2022; 395: 1509-23. https://doi.org/10.1007/s00210-022-02297-1
  144. Suda T, Suzuki Y, Matsui T, Inoue T, Niide O, Yoshimaru T, et al. Dapsone suppresses human neutrophil superoxide production and elastase release in a calcium-dependent manner. Br J Dermatol 2005; 152: 887-95. https://doi.org/10.1111/j.1365-2133.2005.06559.x
  145. Ruzicka T, Wasserman SI, Soter NA, Printz MP. Inhibition of rat mast cell arachidonic acid cyclooxygenase by dapsone. J Allergy Clin Immunol 1983; 72: 365-70. https://doi.org/10.1016/0091-6749(83)90501-8
  146. Kanoh S, Tanabe T, Rubin BK. Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest 2011; 140: 980-90. https://doi.org/10.1378/chest.10-2908
  147. Abe M, Shimizu A, Yokoyama Y, Takeuchi Y, Ishikawa O. A possible inhibitory action of diaminodiphenyl sulfone on tumour necrosis factor-alpha production from activated mononuclear cells on cutaneous lupus erythematosus. Clin Exp Dermatol 2008; 33: 759-63.
  148. Rodriguez E, Mendez-Armenta M, Villeda-Hernandez J, Galvan-Arzate S, Barroso-Moguel R, Rodriguez F, et al. Dapsone prevents morphological lesions and lipid peroxidation induced by quinolinic acid in rat corpus striatum. Toxicology 1999; 139: 111-8. https://doi.org/10.1016/S0300-483X(99)00116-X
  149. Santamaria A, Ordaz-Moreno J, Rubio-Osornio M, Solis-Hernandez F, Rios C. Neuroprotective effect of dapsone against quinolinate- and kainate-induced striatal neurotoxicities in rats. Pharmacol Toxicol 1997; 81: 271-5.
  150. Mata-Bermudez A, Diaz-Ruiz A, Burelo M, Garcia-Martinez BA, Jardon-Guadarrama G, Calderon-Estrella F, et al. Dapsone prevents allodynia and hyperalgesia and decreased oxidative stress after spinal cord injury in rats. Spine (Phila Pa 1976) 2021; 46: 1287-94. https://doi.org/10.1097/BRS.0000000000004015
  151. Rios C, Orozco-Suarez S, Salgado-Ceballos H, Mendez-Armenta M, Nava-Ruiz C, Santander I, et al. Anti-apoptotic effects of dapsone after spinal cord injury in rats. Neurochem Res 2015; 40: 1243-51. https://doi.org/10.1007/s11064-015-1588-z
  152. Diaz-Ruiz A, Salgado-Ceballos H, Montes S, Guizar-Sahagun G, Gelista-Herrera N, Mendez-Armenta M, et al. Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury. J Neurosci Res 2011; 89: 373-80. https://doi.org/10.1002/jnr.22555
  153. Shayesteh S, Khalilzadeh M, Takzaree N, Dehpour AR. Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress. Daru 2022; 30: 303-10. https://doi.org/10.1007/s40199-022-00448-6
  154. Swinson DR, Zlosnick J, Jackson L. Double-blind trial of dapsone against placebo in the treatment of rheumatoid arthritis. Ann Rheum Dis 1981; 40: 235-9. https://doi.org/10.1136/ard.40.3.235
  155. Fowler PD, Shadforth MF, Crook PR, Lawton A. Report on chloroquine and dapsone in the treatment of rheumatoid arthritis: a 6-month comparative study. Ann Rheum Dis 1984; 43: 200-4. https://doi.org/10.1136/ard.43.2.200
  156. Haar D, Solvkjaer M, Unger B, Rasmussen KJ, Christensen L, Hansen TM. A double-blind comparative study of hydroxychloroquine and dapsone, alone and in combination, in rheumatoid arthritis. Scand J Rheumatol 1993; 22: 113-8. https://doi.org/10.3109/03009749309099254
  157. Gusdorf L, Lipsker D. Neutrophilic urticarial dermatosis: a review. Ann Dermatol Venereol 2018; 145: 735-40. https://doi.org/10.1016/j.annder.2018.06.010
  158. Shi H, Gudjonsson JE, Kahlenberg JM. Treatment of cutaneous lupus erythematosus: current approaches and future strategies. Curr Opin Rheumatol 2020; 32: 208-14. https://doi.org/10.1097/BOR.0000000000000704
  159. Zampeli E, Moutsopoulos HM. Dapsone: an old drug effective for subacute cutaneous lupus erythematosus. Rheumatology (Oxford) 2019; 58: 920-1. https://doi.org/10.1093/rheumatology/key434
  160. Ujiie H, Shimizu T, Ito M, Arita K, Shimizu H. Lupus erythematosus profundus successfully treated with dapsone: review of the literature. Arch Dermatol 2006; 142: 399-401. https://doi.org/10.1001/archderm.142.3.399
  161. de Risi-Pugliese T, Cohen Aubart F, Haroche J, Moguelet P, Grootenboer-Mignot S, Mathian A, et al. Clinical, histological, immunological presentations and outcomes of bullous systemic lupus erythematosus: 10 new cases and a literature review of 118 cases. Semin Arthritis Rheum 2018; 48: 83-9. https://doi.org/10.1016/j.semarthrit.2017.11.003
  162. Lu Q, Long H, Chow S, Hidayat S, Danarti R, Listiawan Y, et al. Guideline for the diagnosis, treatment and long-term management of cutaneous lupus erythematosus. J Autoimmun 2021; 123: 102707.
  163. Diaz-Ruiz A, Nader-Kawachi J, Calderon-Estrella F, Mata-Bermudez A, Alvarez-Mejia L, Rios C. Dapsone, more than an effective neuro and cytoprotective drug. Curr Neuropharmacol 2022; 20: 194-210. https://doi.org/10.2174/1570159X19666210617143108
  164. Nader-Kawachi J, Gongora-Rivera F, Santos-Zambrano J, Calzada P, Rios C. Neuroprotective effect of dapsone in patients with acute ischemic stroke: a pilot study. Neurol Res 2007; 29: 331-4. https://doi.org/10.1179/016164107X159234
  165. Lee JH, Lee CJ, Park J, Lee SJ, Choi SH. The neuroinflammasome in Alzheimer's disease and cerebral stroke. Dement Geriatr Cogn Dis Extra 2021; 11: 159-67. https://doi.org/10.1159/000516074
  166. Walling HW, Sontheimer RD. Cutaneous lupus erythematosus: issues in diagnosis and treatment. Am J Clin Dermatol 2009; 10: 365-81. https://doi.org/10.2165/11310780-000000000-00000
  167. Ahrens EM, Meckler RJ, Callen JP. Dapsone-induced peripheral neuropathy. Int J Dermatol 1986; 25: 314-6. https://doi.org/10.1111/j.1365-4362.1986.tb02253.x
  168. Gutmann L, Martin JD, Welton W. Dapsone motor neuropathy--an axonal disease. Neurology 1976; 26(6 PT 1): 514-6. https://doi.org/10.1212/WNL.26.6.514
  169. Prussick R, Shear NH. Dapsone hypersensitivity syndrome. J Am Acad Dermatol 1996; 35(2 Pt 2): 346-9. https://doi.org/10.1016/S0190-9622(96)90667-2
  170. Zaccone G, Capillo G, Fernandes JMO, Kiron V, Lauriano ER, Alesci A, et al. Expression of the antimicrobial peptide Piscidin 1 and neuropeptides in fish gill and skin: a potential participation in neuro-immune interaction. Mar Drugs 2022; 20: 145.
  171. Lauriano ER, Capillo G, Icardo JM, Fernandes JMO, Kiron V, Kuciel M, et al. Neuroepithelial cells (NECs) and mucous cells express a variety of neurotransmitters and neurotransmitter receptors in the gill and respiratory air-sac of the catfish Heteropneustes fossilis (Siluriformes, Heteropneustidae): a possible role in local immune defence. Zoology (Jena) 2021; 148: 125958.
  172. Salger SA, Cassady KR, Reading BJ, Noga EJ. A diverse family of host-defense peptides (Piscidins) exhibit specialized anti-bacterial and antiprotozoal activities in fishes. PLoS One 2016; 11: e0159423.
  173. Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials 2015; 53: 1-11. https://doi.org/10.1016/j.biomaterials.2015.02.069
  174. Cheng MH, Pan CY, Chen NF, Yang SN, Hsieh S, Wen ZH, et al. Piscidin-1 induces apoptosis via mitochondrial reactive oxygen species-regulated mitochondrial dysfunction in human osteosarcoma cells. Sci Rep 2020; 10: 5045.
  175. Ting CH, Chen YC, Wu CJ, Chen JY. Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 2016; 7: 40329-47. https://doi.org/10.18632/oncotarget.9612
  176. Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci 2006; 8: 335-44. https://doi.org/10.31887/DCNS.2006.8.3/tban
  177. Theuretzbacher U, Outterson K, Engel A, Karlen A. The global preclinical antibacterial pipeline. Nat Rev Microbiol 2020; 18: 275-85. https://doi.org/10.1038/s41579-019-0288-0
  178. Mouraux A, Bannister K, Becker S, Finn DP, Pickering G, Pogatzki-Zahn E, et al. Challenges and opportunities in translational pain research - An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur J Pain 2021; 25: 731-56. https://doi.org/10.1002/ejp.1730
  179. Lapolla W, Digiorgio C, Haitz K, Magel G, Mendoza N, Grady J, et al. Incidence of postherpetic neuralgia after combination treatment with gabapentin and valacyclovir in patients with acute herpes zoster: open-label study. Arch Dermatol 2011; 147: 901-7.  https://doi.org/10.1001/archdermatol.2011.81