DOI QR코드

DOI QR Code

Dynamic instability region analysis of reinforced-CNTs truncated conical shells using mixed DQ-Bolotin method

  • H. Vossough (Faculty of Mechanical Engineering, University of Kashan) ;
  • F. Ahmadi (Faculty of Mechanical Engineering, University of Kashan) ;
  • S. Golabi (Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2023.03.27
  • Accepted : 2023.05.30
  • Published : 2023.07.25

Abstract

In this paper, dynamic buckling of truncated conical shell made of carbon nanotubes (CNTs) composite is studied. In aerospace industries, this category of structures is utilized extensively due to wide range of engineering applications. To calculate the effective material properties of the nanocomposite, The Mori-Tanaka model is applied. Also, the motion equations are derived with the assistance of the first order shear deformation theory (FSDT), Hamilton's principle and energy method. Besides, In order to solve motion equations and analyze dynamic instability region (DIR) of the structure, mixed model of differential quadrature method (DQM) and Bolotin's method is used. Moreover, investigation of the different parameters effects such as geometrical parameters and volume fraction of CNTs on the analysis of the DIR of the structure is done. In accordance with the obtained results, the DIR will occur at higher frequencies by increasing the volume fraction of CNTs.

Keywords

References

  1. Adibi, M. and Talebkhah, R. (2022), "Seismic performance assessment of the precast concrete buildings using FEMA P-695 methodology", Struct. Eng. Mech., 82(1), 55-67. https://doi.org/10.12989/sem.2022.82.1.055.
  2. Amezcua, H.R. and Ayala, A.G. (2023), "A computationally efficient numerical integration scheme for non-linear planestress/strain FEM applications using one-point constitutive model evaluation", Struct. Eng. Mech., 85(1), 89-104. https://doi.org/10.12989/sem.2023.85.1.089.
  3. Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of conical shells with intermediate ring support", Aerosp. Sci. Technol., 69, 321-332. https://doi.org/10.1016/j.ast.2017.06.037.
  4. Haftchenar,i H., Darvizeh, M., Darvizeh, A. and Ansari, R. (2007), "Dynamic analysis of composite cylindrical shells using differential quadrature method (DQM)", Compos. Struct., 78(2), 292-298. https://doi.org/10.1016/j.compstruct.2005.10.003.
  5. Ke, L. and Martin, R. (2016), "Nonlinear buckling analysis of the conical and cylindrical shells using the SGL strain based reduced order model and the PHC method", Aerosp. Sci. Technol., 55, 103-110. https://doi.org/10.1016/j.ast.2016.05.018.
  6. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  7. Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  8. Korjakin, A., Rikards, R., Altenbach, H. and Chate, A. (2001), "Free damped vibrations of sandwich shells of revolution", J. Sandw. Struct. Mater., 3(3), 171-196. https://doi.org/10.1106/LB2E-22L4-7JA6-CAED.
  9. Parand, A.A. and Alibeigloo, A. (2017), "Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM", Compos. Part B: Eng., 126, 1-16. https://doi.org/10.1016/j.compositesb.2017.05.071.
  10. Safarpour, M., Rahim, A.R. and Alibeigloo, A. (2019), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct. Mach., 48, 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  11. Taha, M. and Essam, M. (2013), "Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method", Ain Shams Eng. J., 4(3), 515-521. https://doi.org/10.1016/j.asej.2012.10.005.
  12. Tan, X., Zhu, Sh., Wang, B., Yao, K., Chen, Sh., Xu, P., Wang, L. and Sun, Y. (2020), "Mechanical response of negative stiffness truncated-conical shell systems: experiment, numerical simulation and empirical model", Compos. Part B: Eng., 188, 107898. https://doi.org/10.1016/j.compositesb.2020.107898.
  13. Tayebi, M.S., Salami, S.J. and Tavakolian, M. (2023), "Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM", Struct. Eng. Mech., 85(4), 445-459. https://doi.org/10.12989/sem.2023.85.4.445.
  14. Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solid Struct., 31(4), 443-456. https://doi.org/10.1016/0020-7683(94)90085-X.
  15. Wilkins, D.J., Bert, C.W. and Egle, D.M. (1970), "Free vibrations of orthotropic sandwich conical shells with various boundary conditions", J. Sound Vib., 13, 211-228. https://doi.org/10.1016/S0022-460X(70)81175-0.
  16. Xiang, X., Guoyong, J., Wanyou, L. and Zhigang, L. (2014), "A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures", Compos. Struct., 111, 20-30. https://doi.org/10.1016/j.compstruct.2013.12.019.
  17. Youcef, K. and Aouni, A.L. (2016), "Numerical model to analyze the aerodynamic behavior of a combined conical-cylindrical shell", Aerosp. Sci. Technol., 58, 601-617. https://doi.org/10.1016/j.ast.2016.09.019
  18. Zhang, P., Du, Ch., Zhao, W. and Zhang, D. (2022), "Hydraulic fracture simulation of concrete using the SBFEM-FVM model", Struct. Eng. Mech., 80, 553-562. https://doi.org/10.12989/sem.2022.82.1.055.