DOI QR코드

DOI QR Code

Estimation of shear resistance offered by EB-FRP U-jackets: An approach based on fuzzy-inference system

  • S Kar (Department of Civil Engineering, O P Jindal University) ;
  • E.V. Prasad (Department of Civil Engineering, GITAM Deemed to be University) ;
  • Nikhil P. Zade (Civil Engineering Department, Chandigarh University) ;
  • Parveen Sihag (Department of Civil engineering, National Institute of Technology) ;
  • K.C. Biswal (Civil Engineering Department, Chandigarh University)
  • Received : 2022.10.11
  • Accepted : 2023.03.20
  • Published : 2023.07.25

Abstract

The current study targets to apply the adaptive neuro-fuzzy inference system (ANFIS) for the estimation of the shear resistance offered by the externally bonded fiber-reinforced polymer (EB-FRP) U-jackets. A total of 202 groups of data cumulated from previous investigations, were employed for the development and evaluation of the ANFIS model. A relative appraisal between the ANFIS predictions and the results of experiments has shown that the assessments by current ANFIS model are in good concurrence with the latter. In addition, assessment of the accuracy of the ANFIS model was done by relating the ANFIS predictions with the forecasts of eight extensively used design guidelines. Based on the examination of various performance measures, it has been derived that the adequacy of the ANFIS model is better than the available guidelines. A parametric investigation has additionally been done to reconnoiter the influence of individual parameters as well as their combined effects on the shear contribution of EB-FRP. Based on the observations made from the parametric study, it has been witnessed that the ANFIS model has incorporated the effect of different parameters more competently than the considered design guidelines.

Keywords

Acknowledgement

The authors would like to thank the National Institute of Technology Rourkela for the financial support.

References

  1. Abdel-Jaber, M.S., Walker, P.R. and Hutchinson, A.R. (2003), "Shear strengthening of reinforced concrete beams using different configurations of externally bonded carbon fibre reinforced plates", Mater. Struct., 36, 291-301. https://doi.org/10.1007/BF02480868.
  2. Abdul Samad, A.A., Ali, N., Mohamad, N., Jayaprakash, J., Tee, K.F. and Mendis, P. (2017), "Shear strengthening and shear repair of 2-span continuous RC beams with CFRP strips", J. Compos. Constr., 21(3), 1-12. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000756.
  3. ACI 440.2 R-17 (2017), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
  4. Adhikary, B.B. and Mutsuyoshi, H. (2004), "Behavior of concrete beams strengthened in shear with carbon-fiber sheets", J. Compos. Constr., 8(3), 258-264. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(258).
  5. Adhikary, B.B., Mutsuyoshi, H. and Ashraf, M. (2004), "Shear strengthening of reinforced concrete beams using fiber-reinforced polymer sheets with bonded anchorage", ACI Struct. J., 101(5), 660-668. https://doi.org/10.14359/13388.
  6. Al-Akhras, N.M., Jamal Shannag, M. and Malkawi, A.B. (2016), "Evaluation of shear-deficient lightweight RC beams retrofitted with adhesively bonded CFRP sheets", Eur. J. Environ. Civil Eng., 20(8), 899-913. https://doi.org/10.1080/19648189.2015.1084383.
  7. Al-Gburi, S.N., Akpinar, P. and Helwan, A. (2022), "Machine learning in concrete's strength prediction", Comput. Concrete, 29(6), 433-444. https://doi.org/10.12989/cac.2022.29.6.433.
  8. Allam, S.M. and Ebeido, T.I. (2003), "Retrofitting of RC beams predamaged in shear using CFRP sheets", Alex. Eng. J., 42(1), 87-101.
  9. Al-Rousan, R.Z. and Issa, M.A. (2016), "The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber-reinforced polymer composites", Adv. Struct. Eng., 19(11), 1769-1779. https://doi.org/10.1177/1369433216649386.
  10. Altoubat, S., Karzad, A.S. and Maalej, M. (2018), "Strengthening of damaged reinforced concrete beams using externally bonded fiber reinforced polymer", Spec. Publ., 327, 1-28. https://doi.org/10.14359/51713349.
  11. Alzate, A., Arteaga, A., de Diego, A., Cisneros, D. and Perera, R. (2013), "Shear strengthening of reinforced concrete members with CFRP sheets", Mater. Constr., 63(310), 251-265. https://doi.org/10.3989/mc.2012.06611
  12. Armaghani, D.J., Harandizadeh, H., Momeni, E., Maizir, H. and Zhou, J. (2022), "An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity", Artif. Intell. Rev., 55(3), 2313-2350. https://doi.org/10.1007/s10462-021-10065-5.
  13. ARTBA (2020), 2020 Bridge Report, American Road & Transportation Builders Association, Washington, D.C., USA.
  14. AS 5100.8 (2017), Bridge Design Rehabilitation and Strengthening of Existing Bridges, Standards Australia, Sydney, Australia.
  15. Baggio, D., Soudki, K. and Noel, M. (2014), "Strengthening of shear critical RC beams with various FRP systems", Constr. Build. Mater., 66, 634-644. https://doi.org/10.1016/j.conbuildmat.2014.05.097.
  16. Beber, A.J. and Filho Campos, A. (2005), "CFRP composites on the shear strengthening of reinforced concrete beams", Rev. IBRACON Estrut., 1(2), 127-143.
  17. Belarbi, A., Bae, S.W. and Brancaccio, A. (2012), "Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets", Constr. Build. Mater., 32, 27-40. https://doi.org/10.1016/j.conbuildmat.2010.11.102.
  18. BS EN 1998-3 (2005), Eurocode 8 - Design of Structures for Earthquake Resistance - Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardization, Brussels, Belgium.
  19. Cao, S.Y., Chen, J.F., Teng, J.G., Hao, Z. and Chen, J. (2005), "Debonding in RC beams shear strengthened with complete FRP wraps", J. Compos. Constr., 9(5), 417-428. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(417).
  20. CNR-DT 200 R1 (2013), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, National Research Council Advisory Committee on Technical Recommendations for Construction, Roma, Italy.
  21. Costa, I.G. and Barros, J.A.O. (2010), "Flexural and shear strengthening of RC beams with composite materials - the influence of cutting steel stirrups to install CFRP strips", Cement Concrete Compos., 32(7), 544-553. https://doi.org/10.1016/j.cemconcomp.2010.03.003.
  22. DAfStb (2012), Strengthening of Concrete Members with Adhesively Bonded Reinforcement, German Committee for Reinforced Concrete, Berlin, Germany.
  23. Denai, M.A., Palis, F. and Zeghbib, A. (2004), "ANFIS based modelling and control of non-linear systems: A tutorial", Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, Hague, The Netherlands, October.
  24. Diagana, C., Li, A., Gedalia, B. and Delmas, Y. (2003), "Shear strengthening effectiveness with CFF strips", Eng. Struct., 25(4), 507-516. https://doi.org/10.1016/S0141-0296(02)00208-0.
  25. Dias, S. and Barros, J. (2005), "Experimental research of a new CFRP-based shear strengthening technique for reinforced concrete beams", Rev. IBRACON Estrut., 1(2), 103-126.
  26. Diotallevi, P.P., Landi, L. and Guiduzzi, M. (2017), "Experimental tests of RC beams strengthened with composite materials using IPN water-based resins", Mater. Struct. Mater. Constr., 50(3), 1-18. https://doi.org/10.1617/s11527-017-1041-7.
  27. El-Ghandour, A.A. (2011), "Experimental and analytical investigation of CFRP flexural and shear strengthening efficiencies of RC beams", Constr. Build. Mater., 25(3), 1419-1429. https://doi.org/10.1016/j.conbuildmat.2010.09.001.
  28. Farghal, O.A. (2015), "Shear strength of reinforced concrete T-beams strengthened using carbon fiber reinforced polymer sheets", International Conference on Advances in Structural and Geotechnical Engineering (ICASGE 2015), Hurghada, Egypt, April.
  29. fib-TG 9.3 (2001), Externally Bonded FRP Reinforcement for RC Structures, International Federation for Structural Concrete, Lausanne, Switzerland.
  30. Godat, A., Qu, Z., Lu, X.Z., Labossiere, P., Ye, L.P. and Neale, K.W. (2010), "Size effects for reinforced concrete beams strengthened in shear with CFRP strips", J. Compos. Constr., 14(3), 260-271. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000072.
  31. Gonzalez-Libreeos, J.H., Pellegrino, C. and Giacomin, G. (2018), "RC beams strengthened on shear with FRP and FRCM composites", Proceedings of Italian Concrete Days 2016, Rome, Italy, October.
  32. Grande, E., Imbimbo, M. and Rasulo, A. (2013), "Experimental response of RC beams strengthened in shear by FRP sheets", Open Civil Eng J., 7(1), 126-134. http://doi.org/10.2174/1874149501307010127.
  33. Haddad, R.H., Al-Rousan, R.Z. and Al-Sedyiri, B.K. (2013), "Repair of shear-deficient and sulfate-damaged reinforced concrete beams using FRP composites", Eng. Struct., 56, 228-238. https://doi.org/10.1016/j.engstruct.2013.05.007.
  34. Harandizadeh, H., Toufigh, M.M. and Toufigh, V. (2019), "Application of improved ANFIS approaches to estimate bearing capacity of piles", Soft Comput., 23(19), 9537-9549. https://doi.org/10.1007/s00500-018-3517-y.
  35. Hu, B. and Wu, Y.F. (2018), "Effect of shear span-to-depth ratio on shear strength components of RC beams", Eng. Struct., 168, 770-783. https://doi.org/10.1016/j.engstruct.2018.05.017
  36. Ilki, A., Demir, C., Bedirhanoglu, I. and Kumbasar, N. (2009), "Seismic retrofit of brittle and low strength RC columns using fiber reinforced polymer and cementitious composites", Adv. Struct. Eng., 12(3), 325-347. https://doi.org/10.1260/136943309788708356.
  37. Jang, J.S. (1993), "ANFIS: Adaptive-network-based fuzzy inference system", IEEE Tran. Syst. Man Cybernet., 23(3), 665-685. https://doi.org/10.1109/21.256541.
  38. Jayaprakash, J., Abdul Samad, A.A., Anvar Abbasovich, A. and Abang Ali, A.A. (2008), "Shear capacity of precracked and non-precracked reinforced concrete shear beams with externally bonded bi-directional CFRP strips", Constr. Build. Mater., 22(6), 1148-1165. https://doi.org/10.1016/j.conbuildmat.2007.02.008.
  39. Jian, G., Wen, S. and Wei, L. (2022), "Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures", Adv. Concrete Constr., 13(1), 11-23. https://doi.org/10.12989/acc.2022.13.1.011.
  40. JSCE (2001), Recommendations for Upgrading of Concrete Structures with Use of Continuous Fiber Sheets, Japan Society of Civil Engineers, Tokyo, Japan.
  41. Kar, S. and Biswal, K.C. (2020), "A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets", Comput. Concrete, 26(5), 397-409. https://doi.org/10.12989/cac.2020.26.5.397.
  42. Kar, S., Pandit, A.R. and Biswal, K.C. (2020), "Prediction of FRP shear contribution for wrapped shear deficient RC beams using adaptive neuro-fuzzy inference system (ANFIS)", Struct., 23, 702-717. https://doi.org/10.1016/j.istruc.2019.10.022.
  43. Karzad, A.S., Al Toubat, S., Maalej, M. and Estephane, P. (2017), "Repair of reinforced concrete beams using carbon fiber reinforced polymer", MATEC Web Conf., 120, 01008. https://doi.org/10.1051/matecconf/201712001008.
  44. Karzad, A.S., Leblouba, M., Al Toubat, S. and Maalej, M. (2019), "Repair and strengthening of shear-deficient reinforced concrete beams using carbon fiber reinforced polymer", Compos. Struct., 223, 110963. https://doi.org/10.1016/j.compstruct.2019.110963.
  45. Khalifa, A. and Nanni, A. (2002), "Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites", Constr. Build. Mater., 16(3), 135-146. https://doi.org/10.1016/S0950-0618(02)00002-8.
  46. Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H. and Clark, S. (2014), "Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system", J. Clean. Prod., 73, 183-192. https://doi.org/10.1016/j.jclepro.2013.09.057.
  47. Kisi, O., Mansouri, I., Awoyera, P.O. and Lee, C.H. (2021), "Modeling flexural overstrength factor for steel beams using heuristic soft-computing methods", Struct., 34, 3238-3246. https://doi.org/10.1016/j.istruc.2021.09.075.
  48. Leung, C.K.Y., Chen, Z., Lee, S., Ng, M., Xu, M. and Tang, J. (2007), "Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips", J. Compos. Constr., 11(5), 487-496. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(487),
  49. Li, W. and Leung, C.K.Y. (2017), "Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips", Compos. Struct., 177, 141-157. https://doi.org/10.1016/j.compstruct.2017.06.059.
  50. Manos, G.C., Katakalοs, Κ., Papakonstantinou, C.G. and Koidis, G. (2012), "Enhanced repair and strengthening of reinforced concrete beams utilizing external fiber reinforced polymer sheets and novel anchoring devices", Proceeding of 15th WCEE, Lisbon, Portugal, September.
  51. Miladirad, K., Golafshani, E.M., Safehian, M. and Sarkar, A. (2022), "Application of machine learning methods for predicting the mechanical properties of rubbercrete", Adv. Concrete Constr., 14(1), 15-34. https://doi.org/10.12989/acc.2022.14.1.015.
  52. Milovancevic, M., Denic, N., Cirkovic, B., Nesic, Z., Paunovic, M. and Stojanovic, J. (2021), "Prediction of shear debonding strength of concrete structure with high-performance fiber reinforced concrete", Struct., 33, 4475-4480. https://doi.org/10.1016/j.istruc.2021.07.012.
  53. Minh, H. and Mutsuyoshi, H. (2008), "Shear strengthening of reinforced concrete beams using epoxy bonded steel plates, CFRP sheets and externally anchored stirrups", Viet. J. Mech., 30(4), 299-306. https://doi.org/10.15625/0866-7136/30/4/5635
  54. Moayedi, H., Raftari, M., Sharifi, A., Amizah, W., Jusoh, W., Safuan, A. and Rashid, A. (2020), "Optimization of ANFIS with GA and PSO estimating α ratio in driven piles", Eng. Comput., 36, 227-238. https://doi.org/10.1007/s00366-018-00694-w.
  55. Mofidi, A. and Chaallal, O. (2011a), "Shear strengthening of RC beams with EB FRP: influencing factors and conceptual debonding model", J. Compos. Constr., 15(1), 62-74. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000153.
  56. Mofidi, A. and Chaallal, O. (2011b), "Shear strengthening of RC beams with externally bonded FRP Composites: effect of strip-width-to-strip-spacing ratio", J. Compos. Constr., 15(5), 732-742. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000219.
  57. Monti, G. and Liotta, M. (2007), "Tests and design equations for FRP-strengthening in shear", Constr. Build. Mater., 21(4), 799-809. https://doi.org/10.1016/j.conbuildmat.2006.06.023.
  58. Mosallam, A.S. and Banerjee, S. (2007), "Shear enhancement of reinforced concrete beams strengthened with FRP composite laminates", Compos. Part B: Eng., 38(5-6), 781-793. https://doi.org/10.1016/j.compositesb.2006.10.002.
  59. Mostofinejad, D., Hosseini, S.A. and Razavi, S.B. (2016), "Influence of different bonding and wrapping techniques on performance of beams strengthened in shear using CFRP reinforcement", Constr. Build. Mater., 116, 310-320. https://doi.org/10.1016/j.conbuildmat.2016.04.113.
  60. Naderpour, H. and Alavi, S.A. (2017), "A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of adaptive neuro-fuzzy inference system", Compos. Struct., 170, 215-227. https://doi.org/10.1016/j.compstruct.2017.03.028.
  61. Nafees, A., Javed, M.F., Khan, S., Nazir, K., Farooq, F., Aslam, F., Musarat, M.A. and Vatin, N.I. (2021), "Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP", Mater., 14(24), 7531. https://doi.org/10.3390/ma14247531.
  62. Nguyen-Minh, L. and Rovnak, M. (2015), "Size effect in uncracked and pre-cracked reinforced concrete beams shear-strengthened with composite jackets", Compos. Part B: Eng., 78, 361-376. https://doi.org/10.1016/j.compositesb.2015.02.035.
  63. O zturk, O. (2021), "Strength and strain modeling of CFRP - confined concrete cylinders using ANNs", Comput. Concrete, 27(3), 225-239. https://doi.org/10.12989/cac.2021.27.3.225.
  64. Pellegrino, C. and Modena, C. (2006), "Fiber-reinforced polymer shear strengthening of reinforced concrete beams : Experimental study and analytical modeling", ACI Struct. J., 103(5), 720-728. https://doi.org/10.14359/16924.
  65. Pellegrino, C. and Modena, C. (2008), "An experimentally based analytical model for the shear capacity of FRP-strengthened reinforced concrete beams", Mech. Compos. Mater., 44(3), 231-244. https://doi.org/10.1007/s11029-008-9016-y.
  66. Peng, J., Yan, G., Zandi, Y., Sadighi Agdas, A., Pourrostam, T., Ezz El-Arab, I., Denic, N., Nesic, Z., Cirkovic, B. and Amine Khadimallah, M. (2022), "Prediction and optimization of the flexural behavior of corroded concrete beams using adaptive neuro fuzzy inference system", Struct., 43, 200-208. https://doi.org/10.1016/j.istruc.2022.06.043.
  67. Pham, T.M., and Hao, H. (2016), "Impact behavior of FRP-strengthened RC beams without stirrups", J. Compos. Constr., 20(4), https://doi.org/10.1061/(ASCE)CC.1943-5614.0000671.
  68. Rizzo, A. and de Lorenzis, L. (2009), "Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement", Constr. Build. Mater., 23(4), 1555-1567. https://doi.org/10.1016/j.conbuildmat.2007.08.014.
  69. Saadat, M. and Bayat, M. (2022), "Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR)", Geomech. Geoeng., 17(1), 80-91. https://doi.org/10.1080/17486025.2019.1699668.
  70. Sas, G., Taljsten, B., Barros, J., Lima, J. and Carolin, A. (2009), "Are available models reliable for predicting the FRP contribution to the shear resistance of RC beams?", J. Compos. Constr., 13(6), 514-534. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000045.
  71. Shahri, S.F. and Mousavi, S.R. (2021), "Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods", Comput. Concrete, 24(4), 305-317. https://doi.org/10.12989/cac.2021.4.27.305.
  72. Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021.
  73. Tanyildizi, H. (2022), "Predicting bond strength of corroded reinforcement by deep learning", Comput. Concrete, 29(3), 145-159. https://doi.org/10.12989/cac.2022.29.3.145.
  74. Tan, Y., Shuai, C., Jiao, L. and Shen, L. (2017), "An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance", Environ. Impact Assess. Rev., 65, 29-40. https://doi.org/10.1016/j.eiar.2017.04.004.
  75. Tan, Z. and Ye, L.P. (2003), "Experimental research on shear capacity of RC beam strengthened with externally bonded FRP sheets", Chin. Civil Eng. J., 36(11), 12-18.
  76. Tetta, Z.C. and Bournas, D.A. (2016), "TRM vs FRP jacketing in shear strengthening of concrete members subjected to high temperatures", Compos. Part B: Eng., 106, 190-205. https://doi.org/10.1016/j.compositesb.2016.09.026.
  77. Tetta, Z.C., Koutas, L.N. and Bournas, D.A. (2015), "Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams", Compos. Part B: Eng., 77, 338-348. https://doi.org/10.1016/j.compositesb.2015.03.055.
  78. TR 55 (2012), Design Guidance for Strengthening Concrete Structures Using Fibre Composite Materials, The concrete society, Camberley, UK.
  79. Triantafillou, T.C. (1998), "Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites", ACI Struct. J., 95(2), 107-115. https://doi.org/10.14359/531.
  80. Wu, G., An, L. and Lv, Z. (2000), "The investigation on shear capacity of CFRP strengthened RC beams", Arch. Struct, 30, 16-20.
  81. Xuesong, F. and Zhongfan, C. (2004), "Experimental research on shear strengthening of reinforced concrete beams with externally bonded CFRP sheets", Ind Build., 34, 89-93.
  82. Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  83. Zhang, Z. and Hsu, C.T.T. (2005), "Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates", J. Compos. Constr., 9(2), 158-169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158).
  84. Zhang, Z., Hsu, C.T.T. and Moren, J. (2004), "Shear strengthening of reinforced concrete beams using carbon-fiber- reinforced polymer laminates", J. Compos. Constr., 8(5), 403-414. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(403).