DOI QR코드

DOI QR Code

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li (Department of Civil Engineering, School of Science, Nanjing University of Science & Technology) ;
  • Xiao-Bao Zuo (Department of Civil Engineering, School of Science, Nanjing University of Science & Technology) ;
  • Yu-Xiao Zou (Department of Civil Engineering, School of Science, Nanjing University of Science & Technology) ;
  • Guang-Pan Zhou (Department of Civil Engineering, School of Science, Nanjing University of Science & Technology)
  • Received : 2021.12.10
  • Accepted : 2023.03.21
  • Published : 2023.07.25

Abstract

Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.

Keywords

Acknowledgement

The study of this paper is financially supported by the National Natural Science Foundation of China (52078252, 51778297), Natural Science Foundation of Jiangsu Province (BK20200494) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0289).

References

  1. Arnold, J., Duddu, R., Brown, K. and Kosson, D.S. (2017), "Influence of multi-species solute transport on modeling of hydrated Portland cement leaching in strong nitrate solutions", Cement Concrete Res., 100, 227-244. https://doi.org/10.1016/j.cemconres.2017.06.002. 
  2. Chen, B.F., Tian, B., Lu, X.C. and Xiong, B.B. (2020), "Microstructure evolution of leached cement paste: Simulation and experiments", Constr. Build. Mater., 231, 117155. https://doi.org/10.1016/j.conbuildmat.2019.117155. 
  3. Chu, I., Amin, M.N. and Kim, J.K. (2013), "Prediction model for the hydration properties of concrete", Comput. Concrete, 12(4), 377-392. https://doi.org/10.12989/cac.2013.12.4.377. 
  4. Chen, W. and Brouwers, H.J.H. (2007), "The hydration of slag, part 1: Reaction models for alkali-activated slag", J. Mater. Sci., 42(2), 428-443. https://doi.org/10.1007/s10853-006-0873-2. 
  5. Chen, W. and Brouwers, H.J.H. (2011), "A method for predicting the alkali concentrations in pore solution of hydrated slag cement paste", J. Mater. Sci., 46(10), 3622-3631. https://doi.org/10.1007/s10853-011-5278-1. 
  6. Chen, C.J. and An, X.H. (2013), "Model for simulating the effects of particle size distribution on the hydration process of cement", Comput. Concrete, 9(3), 179-193. https://doi.org/10.12989/cac.2012.9.3.179. 
  7. Elakneswaran, Y., Owaki, E., Miyahara, S., Ogino, M., Maruya, T. and Nawa, T. (2016), "Hydration study of slag-blended cement based on thermodynamic considerations", Constr. Build. Mater., 124, 615-625. https://doi.org/10.1016/j.conbuildmat.2016.07.138. 
  8. Engbert A., Gruber, S. and Plank, J. (2020), "The effect of alginates on the hydration of calcium aluminate cement", Carbohyd. Polym., 236, 116038. https://doi.org/10.1016/j.carbpol.2020.116038. 
  9. Feng, P., Miao, C.W. and Bullard, J.W. (2014), "A model of phase stability, microstructure and properties during leaching of portland cement binders", Cement Concrete Compos., 49, 9-19. https://doi.org/10.1016/j.cemconcomp.2014.01.006. 
  10. Ghorbanbeigi, H., Yurtdas, I., Shen, W.Q. and Shao, J.F. (2017), "Influences of chemical leaching on elastic and plastic properties of cement-based materials", Eur. J. Environ. Civil Eng., 21(6), 696-711. https://doi.org/10.1080/19648189.2016.1150892. 
  11. Gerard, B., Bellego, C.L. and Bernard, O. (2002), "Simplified modelling of calcium leaching of concrete in various environments", Mater. Struct., 35(10), 632-640. https://doi.org/10.1007/BF02480356. 
  12. Garboczi, E.J. and Bentz, D.P. (1992), "Computer simulation of the diffusivity of cement-based materials", J. Mater. Sci., 27(8), 2083-2092. https://doi.org/10.1007/BF01117921. 
  13. Hadj-Sadok, A., Kenai, S., Courard, L. and Darimont, A. (2011), "Microstructure and durability of mortars modified with medium active blast furnace slag", Constr. Build. Mater., 25(2), 1018-1025. https://doi.org/10.1016/j.conbuildmat.2010.06.077. 
  14. Haga, K., Shibata, M., Hironaga, M., Tanaka, S. and Nagasaki, S. (2005), "Change in pore structure and composition of hardened cement paste during the process of dissolution", Cement Concrete Res., 35(5), 943-950. https://doi.org/10.1016/j.cemconres.2004.06.001. 
  15. Han, F.H., Liu, R.G. and Yan, P.Y. (2014), "Effect of fresh water leaching on the microstructure of hardened composite binder pastes", Constr. Build. Mater., 68, 630-636. https://doi.org/10.1016/j.conbuildmat.2014.07.019. 
  16. Huang, B. and Qian, C.X. (2011), "Characterization and stress-strain relationship of leached concrete", J. Chin. Ceram. Soc., 39(1), 87-91. https://doi.org/10.14062/j.issn.0454-5648.2011.01.031. 
  17. Holmes, N., Kelliher, D. and Tyrer, M. (2020), "Simulating cement hydration using HYDCEM", Constr. Build. Mater., 239, 117811. https://doi.org/10.1016/j.conbuildmat.2019.117811. 
  18. Jain, J. and Neithalath, N. (2009), "Analysis of calcium leaching behavior of plain and modified cement pastes in pure water", Cement Concrete Compos., 31(3), 176-185. https://doi.org/10.1016/j.cemconcomp.2009.01.003. 
  19. Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018. 
  20. Johannesson, B., Yamada, K., Nilsson, L.O. and Hosokawa, Y. (2007), "Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates", Mater. Struct., 40(7), 651-665. https://doi.org/10.1617/s11527-006-9176-y. 
  21. Kuhl, D., Bangert, F. and Meschke, G. (2004), "Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling", Int. J. Solids Struct., 41(1), 15-40. https://doi.org/10.1016/j.ijsolstr.2003.08.005. 
  22. Kolani, B., Buffo-Lacarriere, L., Sellier, A. Escadeillas, G., Boutillon, L. and Linger, L. (2012), "Hydration of slag-blended cements", Cement Concrete Compos., 34(9), 1009-1018. https://doi.org/10.1016/j.cemconcomp.2012.05.007. 
  23. Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001. 
  24. Liu, R.G., Zhang, B. and Yan, P.Y. (2013), "Microstructural variation of hardened cement-slag pastes leached by soft water", J. Chin. Ceram. Soc., 41(11), 1487-1492. https://doi.org/10.7521/j.issn.0454-5648.2013.11.05. 
  25. Lothenbach, B. and Winnefeld, F. (2006), "Thermodynamic modelling of the hydration of Portland cement", Cement Concrete Res., 36(2), 209-226. https://doi.org/10.1016/j.cemconres.2005.03.001. 
  26. Lothenbach, B. (2010), "Thermodynamic equilibrium calculations in cementitious systems", Mater. Struct., 43(10), 1413-1433. https://doi.org/10.1617/s11527-010-9592-x. 
  27. Li, X.N., Zuo, X.B. and Zou, Y.X. (2021), "Modeling and simulation on coupled chloride and calcium diffusion in concrete", Constr. Build. Mater., 271, 121557. https://doi.org/10.1016/j.conbuildmat.2020.121557. 
  28. Moranville, M., Kamali, S. and Guillon, E. (2004), "Physicochemical equilibria of cement-based materials in aggressive environments-experiment and modeling", Cement Concrete Res., 34(9), 1569-1578. https://doi.org/10.1016/j.cemconres.2004.04.033. 
  29. Merzouki, T., Bouasker, M., Khalifa, N.E.H. and Mounanga, P. (2013), "Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age", Constr. Build. Mater., 44, 368-380. https://doi.org/10.1016/j.conbuildmat.2013.02.022. 
  30. Nakarai, K., Ishida, T. and Maekawa, K. (2006), "Modeling of calcium leaching from cement hydrates coupled with micro-pore formation", J. Adv. Concrete Technol., 4(3), 395-407. https://doi.org/10.3151/jact.4.395. 
  31. Patel, R.A., Perko, J., Jacques, D., Schutter, G.D., Ye, G. and Breugel, K.V. (2018), "A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching", Constr. Build. Mater., 166, 158-170. https://doi.org/10.1016/j.conbuildmat.2018.01.114. 
  32. Phung, Q.T., Maes, N., Jacques, D., Perko, J. Schutter, G.D. and Ye, G. (2016), "Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching", Constr. Build. Mater., 115, 179-192. https://doi.org/10.1016/j.conbuildmat.2016.04.049. 
  33. Pourchet, S., Regnaud, L., Perez, J.P. and Nonat, A. (2009), "Early C3A hydration in the presence of different kinds of calcium sulfate", Cement Concrete Res., 39(11), 989-996. https://doi.org/10.1016/j.cemconres.2009.07.019. 
  34. Roziere, E. and Loukili, A. (2011), "Performance-based assessment of concrete resistance to leaching", Cement Concrete Compos., 33 (4), 451-456. https://doi.org/10.1016/j.cemconcomp.2011.02.002. 
  35. Richardson, I.G. (2000), "The nature of the hydration products in hardened cement pastes", Cement Concrete Compos., 22(2), 97-113. https://doi.org/10.1016/S0958-9465(99)00036-0. 
  36. Stora, E., Bary, B., He, Q.C., Deville, E. and Montarnal, P. (2010), "Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: Interactions between damage and leaching", Cement Concrete Res., 40(8), 1226-1236. https://doi.org/10.1016/j.cemconres.2010.04.002. 
  37. Skibsted, J. and Snellings, R. (2019), "Reactivity of supplementary cementitious materials (SCMs) in cement blends", Cement Concrete Res., 124, 105799. https://doi.org/10.1016/j.cemconres.2019.105799. 
  38. Tomosawa, F. (1997), "Development of a kinetic model for hydration of cement", Proceedings of the 10th International Congress on the Chemistry of Cement, Goteborg, Sweden. June.
  39. Tang, C.W. (2010), "Hydration properties of cement pastes containing high-volume mineral admixtures", Comput. Concrete, 7(1), 17-38. https://doi.org/10.12989/cac.2010.7.1.017. 
  40. Tang, Y.J., Zuo, X.B., He, S.L., Ayinde, O. and Yin, G.J. (2016), "Influence of slag content and water-binder ratio on leaching behavior of cement pastes", Constr. Build. Mater., 129, 61-69. https://doi.org/10.1016/j.conbuildmat.2016.11.003. 
  41. Wang, X.Y. and Lee, H.S. (2014), "Prediction of compressive strength of slag concrete using a blended cement hydration model", Comput. Concrete, 14(3), 247-262. https://doi.org/10.12989/cac.2014.14.3.247. 
  42. Wang, X.Y., Lee, H.S., Park, K.B., Kim, J.J. and Golden, J.S. (2010), "A multi-phase kinetic model to simulate hydration of slag- cement blends", Cement Concrete Compos., 32(6), 468-477. https://doi.org/10.1016/j.cemconcomp.2010.03.006. 
  43. Wang, X.Y. and Lee, H.S. (2010), "Modeling the hydration of concrete incorporating fly ash or slag", Cement Concrete Res., 40(7), 984-996. https://doi.org/10.1016/j.cemconres.2010.03.001. 
  44. Walker, C.S., Sutou, S., Oda, C., Mihara, M. and Honda, A. (2016), "Calcium silicate hydrate (C-S-H) gel solubility data and a discrete solid phase model at 25 ℃ based on two binary non-ideal solid solutions", Cement Concrete Res., 79, 1-30. https://doi.org/10.1016/j.cemconres.2015.07.006. 
  45. Wan, K.S., Li, Y. and Sun, W. (2013), "Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution", Constr. Build. Mater., 40, 832-846. https://doi.org/10.1016/j.conbuildmat.2012.11.066. 
  46. Xie, T.T. and Biernacki, J.J. (2011), "The origins and evolution of cement hydration models", Comput. Concrete, 8(6), 647-675. https://doi.org/10.12989/cac.2011.8.6.647. 
  47. Yin, G.J., Zuo, X.B., Tang, Y.J., Ayinde, O. and Ding, D.N. (2017), "Modeling of time-varying stress in concrete under axial loading and sulfate attack", Comput. Concrete, 19(2), 143-152. https://doi.org/10.12989/cac.2017.19.2.143. 
  48. Yu, Y.G. and Zhang, Y.X. (2017), "Coupling of chemical kinetics and thermodynamics for simulations of leaching of cement paste in ammonium nitrate solution", Cement Concrete Res., 95, 95-107. https://doi.org/10.1016/j.cemconres.2017.02.028. 
  49. Zhang, Z.Q., Liu, Y., Huang, L. and Yan, P.Y. (2019), "A new hydration kinetics model of composite cementitious materials, Part 1: Hydration kinetic model of Portland cement", J. Am. Ceram. Soc., 103(3), 1970-1991. https://doi.org/10.1111/jace.16845. 
  50. Zuo, X.B., Tang, Y.J., Yin, G.J., Jiang, K. and He, S.L. (2017), "Influence of fly ash and its partial replacement by slag on the leaching behavior of blended cement pastes", J. Mater. Civil Eng., 29(10), 04017187. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002003.