Acknowledgement
The study of this paper is financially supported by the National Natural Science Foundation of China (52078252, 51778297), Natural Science Foundation of Jiangsu Province (BK20200494) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0289).
References
- Arnold, J., Duddu, R., Brown, K. and Kosson, D.S. (2017), "Influence of multi-species solute transport on modeling of hydrated Portland cement leaching in strong nitrate solutions", Cement Concrete Res., 100, 227-244. https://doi.org/10.1016/j.cemconres.2017.06.002.
- Chen, B.F., Tian, B., Lu, X.C. and Xiong, B.B. (2020), "Microstructure evolution of leached cement paste: Simulation and experiments", Constr. Build. Mater., 231, 117155. https://doi.org/10.1016/j.conbuildmat.2019.117155.
- Chu, I., Amin, M.N. and Kim, J.K. (2013), "Prediction model for the hydration properties of concrete", Comput. Concrete, 12(4), 377-392. https://doi.org/10.12989/cac.2013.12.4.377.
- Chen, W. and Brouwers, H.J.H. (2007), "The hydration of slag, part 1: Reaction models for alkali-activated slag", J. Mater. Sci., 42(2), 428-443. https://doi.org/10.1007/s10853-006-0873-2.
- Chen, W. and Brouwers, H.J.H. (2011), "A method for predicting the alkali concentrations in pore solution of hydrated slag cement paste", J. Mater. Sci., 46(10), 3622-3631. https://doi.org/10.1007/s10853-011-5278-1.
- Chen, C.J. and An, X.H. (2013), "Model for simulating the effects of particle size distribution on the hydration process of cement", Comput. Concrete, 9(3), 179-193. https://doi.org/10.12989/cac.2012.9.3.179.
- Elakneswaran, Y., Owaki, E., Miyahara, S., Ogino, M., Maruya, T. and Nawa, T. (2016), "Hydration study of slag-blended cement based on thermodynamic considerations", Constr. Build. Mater., 124, 615-625. https://doi.org/10.1016/j.conbuildmat.2016.07.138.
- Engbert A., Gruber, S. and Plank, J. (2020), "The effect of alginates on the hydration of calcium aluminate cement", Carbohyd. Polym., 236, 116038. https://doi.org/10.1016/j.carbpol.2020.116038.
- Feng, P., Miao, C.W. and Bullard, J.W. (2014), "A model of phase stability, microstructure and properties during leaching of portland cement binders", Cement Concrete Compos., 49, 9-19. https://doi.org/10.1016/j.cemconcomp.2014.01.006.
- Ghorbanbeigi, H., Yurtdas, I., Shen, W.Q. and Shao, J.F. (2017), "Influences of chemical leaching on elastic and plastic properties of cement-based materials", Eur. J. Environ. Civil Eng., 21(6), 696-711. https://doi.org/10.1080/19648189.2016.1150892.
- Gerard, B., Bellego, C.L. and Bernard, O. (2002), "Simplified modelling of calcium leaching of concrete in various environments", Mater. Struct., 35(10), 632-640. https://doi.org/10.1007/BF02480356.
- Garboczi, E.J. and Bentz, D.P. (1992), "Computer simulation of the diffusivity of cement-based materials", J. Mater. Sci., 27(8), 2083-2092. https://doi.org/10.1007/BF01117921.
- Hadj-Sadok, A., Kenai, S., Courard, L. and Darimont, A. (2011), "Microstructure and durability of mortars modified with medium active blast furnace slag", Constr. Build. Mater., 25(2), 1018-1025. https://doi.org/10.1016/j.conbuildmat.2010.06.077.
- Haga, K., Shibata, M., Hironaga, M., Tanaka, S. and Nagasaki, S. (2005), "Change in pore structure and composition of hardened cement paste during the process of dissolution", Cement Concrete Res., 35(5), 943-950. https://doi.org/10.1016/j.cemconres.2004.06.001.
- Han, F.H., Liu, R.G. and Yan, P.Y. (2014), "Effect of fresh water leaching on the microstructure of hardened composite binder pastes", Constr. Build. Mater., 68, 630-636. https://doi.org/10.1016/j.conbuildmat.2014.07.019.
- Huang, B. and Qian, C.X. (2011), "Characterization and stress-strain relationship of leached concrete", J. Chin. Ceram. Soc., 39(1), 87-91. https://doi.org/10.14062/j.issn.0454-5648.2011.01.031.
- Holmes, N., Kelliher, D. and Tyrer, M. (2020), "Simulating cement hydration using HYDCEM", Constr. Build. Mater., 239, 117811. https://doi.org/10.1016/j.conbuildmat.2019.117811.
- Jain, J. and Neithalath, N. (2009), "Analysis of calcium leaching behavior of plain and modified cement pastes in pure water", Cement Concrete Compos., 31(3), 176-185. https://doi.org/10.1016/j.cemconcomp.2009.01.003.
- Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018.
- Johannesson, B., Yamada, K., Nilsson, L.O. and Hosokawa, Y. (2007), "Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates", Mater. Struct., 40(7), 651-665. https://doi.org/10.1617/s11527-006-9176-y.
- Kuhl, D., Bangert, F. and Meschke, G. (2004), "Coupled chemo-mechanical deterioration of cementitious materials. Part I: Modeling", Int. J. Solids Struct., 41(1), 15-40. https://doi.org/10.1016/j.ijsolstr.2003.08.005.
- Kolani, B., Buffo-Lacarriere, L., Sellier, A. Escadeillas, G., Boutillon, L. and Linger, L. (2012), "Hydration of slag-blended cements", Cement Concrete Compos., 34(9), 1009-1018. https://doi.org/10.1016/j.cemconcomp.2012.05.007.
- Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
- Liu, R.G., Zhang, B. and Yan, P.Y. (2013), "Microstructural variation of hardened cement-slag pastes leached by soft water", J. Chin. Ceram. Soc., 41(11), 1487-1492. https://doi.org/10.7521/j.issn.0454-5648.2013.11.05.
- Lothenbach, B. and Winnefeld, F. (2006), "Thermodynamic modelling of the hydration of Portland cement", Cement Concrete Res., 36(2), 209-226. https://doi.org/10.1016/j.cemconres.2005.03.001.
- Lothenbach, B. (2010), "Thermodynamic equilibrium calculations in cementitious systems", Mater. Struct., 43(10), 1413-1433. https://doi.org/10.1617/s11527-010-9592-x.
- Li, X.N., Zuo, X.B. and Zou, Y.X. (2021), "Modeling and simulation on coupled chloride and calcium diffusion in concrete", Constr. Build. Mater., 271, 121557. https://doi.org/10.1016/j.conbuildmat.2020.121557.
- Moranville, M., Kamali, S. and Guillon, E. (2004), "Physicochemical equilibria of cement-based materials in aggressive environments-experiment and modeling", Cement Concrete Res., 34(9), 1569-1578. https://doi.org/10.1016/j.cemconres.2004.04.033.
- Merzouki, T., Bouasker, M., Khalifa, N.E.H. and Mounanga, P. (2013), "Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age", Constr. Build. Mater., 44, 368-380. https://doi.org/10.1016/j.conbuildmat.2013.02.022.
- Nakarai, K., Ishida, T. and Maekawa, K. (2006), "Modeling of calcium leaching from cement hydrates coupled with micro-pore formation", J. Adv. Concrete Technol., 4(3), 395-407. https://doi.org/10.3151/jact.4.395.
- Patel, R.A., Perko, J., Jacques, D., Schutter, G.D., Ye, G. and Breugel, K.V. (2018), "A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching", Constr. Build. Mater., 166, 158-170. https://doi.org/10.1016/j.conbuildmat.2018.01.114.
- Phung, Q.T., Maes, N., Jacques, D., Perko, J. Schutter, G.D. and Ye, G. (2016), "Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching", Constr. Build. Mater., 115, 179-192. https://doi.org/10.1016/j.conbuildmat.2016.04.049.
- Pourchet, S., Regnaud, L., Perez, J.P. and Nonat, A. (2009), "Early C3A hydration in the presence of different kinds of calcium sulfate", Cement Concrete Res., 39(11), 989-996. https://doi.org/10.1016/j.cemconres.2009.07.019.
- Roziere, E. and Loukili, A. (2011), "Performance-based assessment of concrete resistance to leaching", Cement Concrete Compos., 33 (4), 451-456. https://doi.org/10.1016/j.cemconcomp.2011.02.002.
- Richardson, I.G. (2000), "The nature of the hydration products in hardened cement pastes", Cement Concrete Compos., 22(2), 97-113. https://doi.org/10.1016/S0958-9465(99)00036-0.
- Stora, E., Bary, B., He, Q.C., Deville, E. and Montarnal, P. (2010), "Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials: Interactions between damage and leaching", Cement Concrete Res., 40(8), 1226-1236. https://doi.org/10.1016/j.cemconres.2010.04.002.
- Skibsted, J. and Snellings, R. (2019), "Reactivity of supplementary cementitious materials (SCMs) in cement blends", Cement Concrete Res., 124, 105799. https://doi.org/10.1016/j.cemconres.2019.105799.
- Tomosawa, F. (1997), "Development of a kinetic model for hydration of cement", Proceedings of the 10th International Congress on the Chemistry of Cement, Goteborg, Sweden. June.
- Tang, C.W. (2010), "Hydration properties of cement pastes containing high-volume mineral admixtures", Comput. Concrete, 7(1), 17-38. https://doi.org/10.12989/cac.2010.7.1.017.
- Tang, Y.J., Zuo, X.B., He, S.L., Ayinde, O. and Yin, G.J. (2016), "Influence of slag content and water-binder ratio on leaching behavior of cement pastes", Constr. Build. Mater., 129, 61-69. https://doi.org/10.1016/j.conbuildmat.2016.11.003.
- Wang, X.Y. and Lee, H.S. (2014), "Prediction of compressive strength of slag concrete using a blended cement hydration model", Comput. Concrete, 14(3), 247-262. https://doi.org/10.12989/cac.2014.14.3.247.
- Wang, X.Y., Lee, H.S., Park, K.B., Kim, J.J. and Golden, J.S. (2010), "A multi-phase kinetic model to simulate hydration of slag- cement blends", Cement Concrete Compos., 32(6), 468-477. https://doi.org/10.1016/j.cemconcomp.2010.03.006.
- Wang, X.Y. and Lee, H.S. (2010), "Modeling the hydration of concrete incorporating fly ash or slag", Cement Concrete Res., 40(7), 984-996. https://doi.org/10.1016/j.cemconres.2010.03.001.
- Walker, C.S., Sutou, S., Oda, C., Mihara, M. and Honda, A. (2016), "Calcium silicate hydrate (C-S-H) gel solubility data and a discrete solid phase model at 25 ℃ based on two binary non-ideal solid solutions", Cement Concrete Res., 79, 1-30. https://doi.org/10.1016/j.cemconres.2015.07.006.
- Wan, K.S., Li, Y. and Sun, W. (2013), "Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution", Constr. Build. Mater., 40, 832-846. https://doi.org/10.1016/j.conbuildmat.2012.11.066.
- Xie, T.T. and Biernacki, J.J. (2011), "The origins and evolution of cement hydration models", Comput. Concrete, 8(6), 647-675. https://doi.org/10.12989/cac.2011.8.6.647.
- Yin, G.J., Zuo, X.B., Tang, Y.J., Ayinde, O. and Ding, D.N. (2017), "Modeling of time-varying stress in concrete under axial loading and sulfate attack", Comput. Concrete, 19(2), 143-152. https://doi.org/10.12989/cac.2017.19.2.143.
- Yu, Y.G. and Zhang, Y.X. (2017), "Coupling of chemical kinetics and thermodynamics for simulations of leaching of cement paste in ammonium nitrate solution", Cement Concrete Res., 95, 95-107. https://doi.org/10.1016/j.cemconres.2017.02.028.
- Zhang, Z.Q., Liu, Y., Huang, L. and Yan, P.Y. (2019), "A new hydration kinetics model of composite cementitious materials, Part 1: Hydration kinetic model of Portland cement", J. Am. Ceram. Soc., 103(3), 1970-1991. https://doi.org/10.1111/jace.16845.
- Zuo, X.B., Tang, Y.J., Yin, G.J., Jiang, K. and He, S.L. (2017), "Influence of fly ash and its partial replacement by slag on the leaching behavior of blended cement pastes", J. Mater. Civil Eng., 29(10), 04017187. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002003.