DOI QR코드

DOI QR Code

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Ibrahim Alfaqih (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mohammed A. Al-Osta (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Abdelbaki Chikh (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Ismail M. Mudhaffar (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Saeed Tahir (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • Received : 2023.01.08
  • Accepted : 2023.04.03
  • Published : 2023.07.25

Abstract

This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Keywords

Acknowledgement

The authors would like to acknowledge the support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2209. The support provided by the Department of Civil & Environmental Engineering, KFUPM, Saudi Arabia, is also greatly acknowledged.

References

  1. Chakraverty, S. and Pradhan, K.K. (2016), Vibration of Functionally Graded Beams and Plates, Academic Press, London, UK
  2. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2022), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct. Mach., 50(4), 1137-1160. https://doi.org/10.1080/15397734.2020.1744005.
  3. Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity", Compos. Struct., 262, 113604. https://doi.org/10.1016/j.compstruct.2021.113604.
  4. Feng, J., Safaei, B., Qin, Z. and Chu, F. (2023), "Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene", Compos. Sci. Technol., 233, 109925. https://doi.org/10.1016/j.compscitech.2023.109925.
  5. Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mech., 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4.
  6. Kumar, M. and Sarangi, S.K. (2021), "Harmonic response of carbon nanotube reinforced functionally graded beam by finite element method", Mater. Today: Proc., 44, 4531-4536. https://doi.org/10.1016/j.matpr.2020.10.810.
  7. Lai, Z., Li, Z., Lin, B. and Tang, H. (2022), "Free vibration analysis of rotating sandwich beams with FG-CNTRC face sheets in thermal environments with general boundary conditions", Z. Naturforsch. A, 77(12), 1153-1173. https://doi.org/10.1016/j.compstruct.2017.03.053.
  8. Li, Q., Xie, B., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Braz. Soc. Mech. Sci. Eng., 42(37), 1-18. https://dx.doi.org/10.1007/s40430-020-02317-2.
  9. Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Commun., 37(6), 577-580. https://doi.org/10.1016/j.mechrescom.2010.07.006.
  10. Magnucki, K., Magnucka-Blandzi, E. and Wittenbeck, L. (2022), "Three models of a sandwich beam: Bending, Buckling, and free vibrations", Eng. Trans., 70(2), 97-122. https://doi.org/10.24423/EngTrans.1416.20220331.
  11. Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007.
  12. Melaibari, A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alex. Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
  13. Mercan, K., Baltacioglu, A.K. and Civalek, O. (2018), "Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method", Compos. Struct., 186, 139-153. https://doi.org/10.1016/j.compstruct.2017.12.008.
  14. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-osta, M.A., Al-zahrani, M.M. and Al-dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33(5), 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  15. Nguyen, T.K., Truong-Phong Nguyen, T., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B: Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  16. Peng, X., Xu, J., Yang, E., Li, Y. and Yang, J. (2022), "Influence of the boundary relaxation on free vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Acta Mech., 233(10), 4161-4177. https://doi.org/10.1007/s00707-022-03320-5.
  17. Qing, H. and Wei, L. (2022), "Linear and nonlinear free vibration analysis of functionally graded porous nanobeam using stress-driven nonlocal integral model", Commun. Nonlinear Sci. Numer. Simul., 109, 106300. https://doi.org/10.1016/j.cnsns.2022.106300.
  18. Reid, R.G. and Paskaramoorthy, R. (2012), "Analysis of functionally graded piezoelectric plates in actuator mode", Behav. Mech. Multifunc. Mater. Compos., 8342, 464-477. https://doi.org/10.1117/12.917303.
  19. Safaei, B., Onyibo, E.C. and Hurdoganoglu, D. (2022), "Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method", Facta Univ. Ser.: Mech. Eng., 20(2), 279-306. https://doi.org/10.22190/FUME220201009S%0A.
  20. Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D. and Ma, A. (2020), "30 Years of functionally graded materials : An overview of manufacturing methods, applications and future challenges", Compos. Part B, 201, 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
  21. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  22. Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009.
  23. Shi, D., Wang, Q., Shi, X. and Pang, F. (2015), "An accurate solution method for the vibration analysis of Timoshenko beams with general elastic supports", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 229(13), 2327-2340. https://doi.org/10.1177/0954406214558675.
  24. Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.
  25. Song, H. and Qing, H. (2022), "Free damping vibration of functionally graded porous viscoelastic nonlocal microbeam with thermal effect", J. Vib. Control, 2022, 10775463221132046. https://doi.org/10.1177/10775463221132046.
  26. Song, R., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes", Appl. Math. Mech., 42(6), 771-786. https://doi.org/10.1007/s10483-021-2725-7.
  27. Sugano, K., Kurata, M. and Kawada, H. (2014), "Evaluation of mechanical properties of untwisted carbon nanotube yarn for application to composite materials", Carbon, 78, 356-365. https://doi.org/10.1016/j.carbon.2014.07.012.
  28. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
  29. Talebi, S., Hedayati, R., Sadighi, M. and Ashoori, A.R. (2022), "Dynamic thermal buckling of spherical porous shells", Thin Wall. Struct., 172, 108737. https://doi.org/10.1016/j.tws.2021.108737.
  30. Tang, Y. and Qing, H. (2023), "Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models", Commun. Nonlinear Sci. Numer. Simul., 116, 106808. https://doi.org/10.1016/j.cnsns.2022.106808.
  31. Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2019), "Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method", Front. Struct. Civil Eng., 13(2), 324-336. https://doi.org/10.1007/s11709-018-0466-6.
  32. Wang, P., Yuan, P., Sahmani, S. and Safaei, B. (2021), "Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA", Thin Wall. Struct., 166, 108101. https://doi.org/10.1016/j.tws.2021.108101.
  33. Wang, S., Zheng, C., Li, S., Guo, A., Qu, P. and Hu, Y. (2022), "Free vibration of functionally graded carbon nanotube- reinforced composite damping structure based on the higher-order shear deformation theory", Polym. Compos., 44(2), 873-885. https://doi.org/10.1002/pc.27138.
  34. Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube- reinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007.
  35. Yang, X., Sahmani, S. and Safaei, B. (2021), "Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects", Eng. Comput., 37, 1549-1564. https://doi.org/10.1007/s00366-019-00901-2.
  36. Yang, Z., Lu, H., Sahmani, S. and Safaei, B. (2021), "Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness", Arch. Civil Mech. Eng., 21, 1-19. https://doi.org/10.1007/s43452-021-00264-w.
  37. Yi, H., Sahmani, S. and Safaei, B. (2020), "On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions", Arch. Civil Mech. Eng., 20(2), 48. https://doi.org/10.1007/s43452-020-00047-9.
  38. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
  39. Zhang, P., Schiavone, P. and Qing, H. (2023a), "Hygro-thermal vibration study of nanobeams on size-dependent visco-Pasternak foundation via stress-driven nonlocal theory in conjunction with two-variable shear deformation assumption", Compos. Struct., 312, 116870. https://doi.org/10.1016/j.compstruct.2023.116870.
  40. Zhang, P., Schiavone, P. and Qing, H. (2023b), "Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation", Appl. Math. Mech., 44(1), 89-108. https://doi.org/10.1140/epjp/s13360-020-00148-7.
  41. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.