Acknowledgement
The authors would like to acknowledge the support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2209. The support provided by the Department of Civil & Environmental Engineering, KFUPM, Saudi Arabia, is also greatly acknowledged.
References
- Chakraverty, S. and Pradhan, K.K. (2016), Vibration of Functionally Graded Beams and Plates, Academic Press, London, UK
- Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D.W., Habibi, M. and Safarpour, M. (2022), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct. Mach., 50(4), 1137-1160. https://doi.org/10.1080/15397734.2020.1744005.
- Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity", Compos. Struct., 262, 113604. https://doi.org/10.1016/j.compstruct.2021.113604.
- Feng, J., Safaei, B., Qin, Z. and Chu, F. (2023), "Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene", Compos. Sci. Technol., 233, 109925. https://doi.org/10.1016/j.compscitech.2023.109925.
- Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mech., 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4.
- Kumar, M. and Sarangi, S.K. (2021), "Harmonic response of carbon nanotube reinforced functionally graded beam by finite element method", Mater. Today: Proc., 44, 4531-4536. https://doi.org/10.1016/j.matpr.2020.10.810.
- Lai, Z., Li, Z., Lin, B. and Tang, H. (2022), "Free vibration analysis of rotating sandwich beams with FG-CNTRC face sheets in thermal environments with general boundary conditions", Z. Naturforsch. A, 77(12), 1153-1173. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Li, Q., Xie, B., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Braz. Soc. Mech. Sci. Eng., 42(37), 1-18. https://dx.doi.org/10.1007/s40430-020-02317-2.
- Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Commun., 37(6), 577-580. https://doi.org/10.1016/j.mechrescom.2010.07.006.
- Magnucki, K., Magnucka-Blandzi, E. and Wittenbeck, L. (2022), "Three models of a sandwich beam: Bending, Buckling, and free vibrations", Eng. Trans., 70(2), 97-122. https://doi.org/10.24423/EngTrans.1416.20220331.
- Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007.
- Melaibari, A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alex. Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
- Mercan, K., Baltacioglu, A.K. and Civalek, O. (2018), "Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method", Compos. Struct., 186, 139-153. https://doi.org/10.1016/j.compstruct.2017.12.008.
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-osta, M.A., Al-zahrani, M.M. and Al-dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33(5), 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Nguyen, T.K., Truong-Phong Nguyen, T., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. Part B: Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
- Peng, X., Xu, J., Yang, E., Li, Y. and Yang, J. (2022), "Influence of the boundary relaxation on free vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Acta Mech., 233(10), 4161-4177. https://doi.org/10.1007/s00707-022-03320-5.
- Qing, H. and Wei, L. (2022), "Linear and nonlinear free vibration analysis of functionally graded porous nanobeam using stress-driven nonlocal integral model", Commun. Nonlinear Sci. Numer. Simul., 109, 106300. https://doi.org/10.1016/j.cnsns.2022.106300.
- Reid, R.G. and Paskaramoorthy, R. (2012), "Analysis of functionally graded piezoelectric plates in actuator mode", Behav. Mech. Multifunc. Mater. Compos., 8342, 464-477. https://doi.org/10.1117/12.917303.
- Safaei, B., Onyibo, E.C. and Hurdoganoglu, D. (2022), "Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method", Facta Univ. Ser.: Mech. Eng., 20(2), 279-306. https://doi.org/10.22190/FUME220201009S%0A.
- Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D. and Ma, A. (2020), "30 Years of functionally graded materials : An overview of manufacturing methods, applications and future challenges", Compos. Part B, 201, 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Shenas, A.G., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009.
- Shi, D., Wang, Q., Shi, X. and Pang, F. (2015), "An accurate solution method for the vibration analysis of Timoshenko beams with general elastic supports", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 229(13), 2327-2340. https://doi.org/10.1177/0954406214558675.
- Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.
- Song, H. and Qing, H. (2022), "Free damping vibration of functionally graded porous viscoelastic nonlocal microbeam with thermal effect", J. Vib. Control, 2022, 10775463221132046. https://doi.org/10.1177/10775463221132046.
- Song, R., Sahmani, S. and Safaei, B. (2021), "Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes", Appl. Math. Mech., 42(6), 771-786. https://doi.org/10.1007/s10483-021-2725-7.
- Sugano, K., Kurata, M. and Kawada, H. (2014), "Evaluation of mechanical properties of untwisted carbon nanotube yarn for application to composite materials", Carbon, 78, 356-365. https://doi.org/10.1016/j.carbon.2014.07.012.
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259.
- Talebi, S., Hedayati, R., Sadighi, M. and Ashoori, A.R. (2022), "Dynamic thermal buckling of spherical porous shells", Thin Wall. Struct., 172, 108737. https://doi.org/10.1016/j.tws.2021.108737.
- Tang, Y. and Qing, H. (2023), "Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models", Commun. Nonlinear Sci. Numer. Simul., 116, 106808. https://doi.org/10.1016/j.cnsns.2022.106808.
- Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2019), "Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method", Front. Struct. Civil Eng., 13(2), 324-336. https://doi.org/10.1007/s11709-018-0466-6.
- Wang, P., Yuan, P., Sahmani, S. and Safaei, B. (2021), "Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA", Thin Wall. Struct., 166, 108101. https://doi.org/10.1016/j.tws.2021.108101.
- Wang, S., Zheng, C., Li, S., Guo, A., Qu, P. and Hu, Y. (2022), "Free vibration of functionally graded carbon nanotube- reinforced composite damping structure based on the higher-order shear deformation theory", Polym. Compos., 44(2), 873-885. https://doi.org/10.1002/pc.27138.
- Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube- reinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007.
- Yang, X., Sahmani, S. and Safaei, B. (2021), "Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects", Eng. Comput., 37, 1549-1564. https://doi.org/10.1007/s00366-019-00901-2.
- Yang, Z., Lu, H., Sahmani, S. and Safaei, B. (2021), "Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness", Arch. Civil Mech. Eng., 21, 1-19. https://doi.org/10.1007/s43452-021-00264-w.
- Yi, H., Sahmani, S. and Safaei, B. (2020), "On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions", Arch. Civil Mech. Eng., 20(2), 48. https://doi.org/10.1007/s43452-020-00047-9.
- Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
- Zhang, P., Schiavone, P. and Qing, H. (2023a), "Hygro-thermal vibration study of nanobeams on size-dependent visco-Pasternak foundation via stress-driven nonlocal theory in conjunction with two-variable shear deformation assumption", Compos. Struct., 312, 116870. https://doi.org/10.1016/j.compstruct.2023.116870.
- Zhang, P., Schiavone, P. and Qing, H. (2023b), "Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation", Appl. Math. Mech., 44(1), 89-108. https://doi.org/10.1140/epjp/s13360-020-00148-7.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.