DOI QR코드

DOI QR Code

Evaluation on Flexural and Shear Performances of High-Insulation Precast Lightweight Aggregate Concrete Panels

프리캐스트 경량골재 콘크리트 고단열 판넬의 휨 및 전단거동 평가

  • Kim, Jong-Won (Dept. of Architectural Engineering, Kyonggi University) ;
  • Mun, Ju-Hyun (Dept. of Architectural Engineering, Kyonggi University) ;
  • Yang, Keun-Hyeok (Dept. of Architectural Engineering, Kyonggi University)
  • Received : 2023.01.03
  • Accepted : 2023.06.19
  • Published : 2023.07.28

Abstract

This study evaluated flexural and shear behaviors of high-insulation precast concrete panels utilizing artificially manufactured lightweight aggregates derived from sewage sludge referred to as SH-panel. The key parameters investigated include the compressive strengths of the concrete, longitudinal reinforcement ratios, insulation types, and the presence of thermal meta. The results indicated that the flexural and shear strengths of the SH-panel specimens could be conservatively assessed using the design procedure outlined in ACI 318-19 provisions. Furthermore, the SH-panel specimens demonstrate comparable flexural ductility when compared to conventional lightweight aggregate concrete beams. In addition, all SH-panels satisfied the performance requirements for grade 1 strength resistance, as specified in KS F 4736 for lightweight panels, as well as the wind load resistance criteria outlined in KDS 41 10 15 for exterior building materials with special wind resistance.

Keywords

Acknowledgement

이 연구는 국토교통부와 국토교통과학기술진흥원의 지원을 받아 수행한 국토교통기술사업화지원사업(RS-2021-KA161724)이며, 2022학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. ACI Committee 318 (2019). Building Code Requirements for Structural Concrete and Commentary (ACI 318R-19). American Concrete Institute (ACI), 355-356.
  2. Chen, A., Norris, T. G., Hopkins, P. M., & Yossef, M. (2015). Experimental Investigation and Finite Element Analysis of Flexural Behavior of Insulated Concrete Sandwich Panels with FRP Plate Shear Connectors. Engineering Structures, 98, 95-108. https://doi.org/10.1016/j.engstruct.2015.04.022
  3. Hou, H., Ji, K., Wang, W., Qu, B., Fang, M., & Qiu, C. (2019). Flexural Behavior of Precast Insulated Sandwich wall panels: Full-scale Tests and Design Implications. Engineering Structures, 180, 750-761. https://doi.org/10.1016/j.engstruct.2018.11.068
  4. Im, C. R., Yang, K. H., & Mun, J. H. (2020). Assessment of Maximum Longitudinal Reinforcement Ratios for Reinforced Lightweight Aggregate Concrete Beams. Journal of the Korea Concrete Institute, 32(5), 419-425. https://doi.org/10.4334/JKCI.2020.32.5.419
  5. Joseph, J. D. R., Prabakar, J., & Alagusundaramoorthy, P. (2018). Flexural Behavior of Precast Concrete Sandwich Panels Under Different Loading Conditions such as Punching and Bending. Alexandria engineering journal, 57(1), 309-320.
  6. Kim, J. W., Yang, K. H., & Mun, J. H. (2021). Evaluation on Mechanical Properties and Thermal Resistance of Lightweight Concrete Using Bottom Ash Aggregates and Expanded Polystyrene Bead. Journal of the Korea Concrete Institute, 33(6), 569-577. https://doi.org/10.4334/JKCI.2021.33.6.569
  7. Korea Agency for Technology and Standards (KATS) (2018). Extrusion lightweight concrete panels (KS F 4736). Seoul, Korea: Korea Standard Association (KSA), 1-6.
  8. Korea Agency for Technology and Standards (KATS) (2019). Foamed Concrete for Cast-in-site (KS F 4039). Seoul, Korea: Korea Standard Association (KSA), 1-4.
  9. Korea Agency for Technology and Standards (KATS) (2021). Portland Cement (KS L 5201). Seoul, Korea: Korea Standard Association (KSA), 1-6.
  10. Korea Agency for Technology and Standards (KATS) (2022). Aggregates for concrete (KS F 2527). Seoul, Korea: Korea Standard Association (KSA), 1-9.
  11. Ministry of Land, Infrastructure and Transport (2019). KDS 41 10 15 : 2019 Building structure standards, https://www.kcsc.re.kr/Search/ListCodes/102041 (accessed July. 29, 2021)
  12. Mun, J. H., Yang, K. H., Kim, J. W., & Sim, J, H. (2023). Evaluation on Mechanical Properties of Concrete Using Artificial Lightweight Sewage Sludge Aggregates. Journal of the Korea Concrete Institute, Accepted.
  13. Park, R., & Paulay, T. (1975). Reinforced Concrete Structures, New Jersey, USA: Wiley Interscience Publication, 196-199.
  14. O'Hegarty, R., & Kinnane, O. (2020). Review of Precast Concrete Sandwich Panels and Their Innovations. Construction and building materials, 233, 117-145.
  15. Sim, J. H., Kim, J. W., & Yang, K. H. (2022). Optimum Details of Thermal-Meta Structures for Enhancing the Insulation Capacity of Concrete Panels. Journal of the Architectural Institute of Korea, 38(5), 243-250. https://doi.org/10.5659/JAIK.2022.38.5.243
  16. Yang, K. H. (2022). Evaluation on Flexural Response of Precast Concrete Thermal-meta Panels. Journal of the Architectural Institute of Korea, 38(8), 247-254.
  17. Yang, K. H., & Mun, J. H. (2021). Evaluation of Flexural and Shear Behaviors of Lightweight Concrete Eco-Thermal Panel with Bottom Ash Aggregate and Air Foam. Journal of the Korea Concrete Institute, 33(3), 245-251. https://doi.org/10.4334/JKCI.2021.33.3.245
  18. Yang, K. H., Mun, J. H., & Lee, K. H. (2020). Evaluation of Ductility of Lightweight Aggregate Concrete T-beam Arranged with Maximum Longitudinal Reinforcement Ratio. Journal of the Korea Concrete Institute, 32(1), 11-18. https://doi.org/10.4334/JKCI.2020.32.1.011
  19. Yang, K. H., Mun, J. H., Kim, J. W., & Lee, S. J. (2022). Flexural-Shear Performance of Lightweight Concrete Panels with High Insulation Capacity. Buildings, 12(10), 1741.