DOI QR코드

DOI QR Code

스플라이스 슬리브 직경과 그라우트 강도의 영향에 대한 유한요소해석

Finite Element Analysis on the Effect of Splice Sleeve Diameter and Grout Strength

  • Lee, Sang-Sup (Korea Institute of Civil Engineering and Building Technology) ;
  • Boo, Yoon-Seob (Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Sang-Min (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2023.03.28
  • 심사 : 2023.06.20
  • 발행 : 2023.07.28

초록

In this study, a finite element model and analysis results are presented to investigate the effect of the sleeve diameter and the strength of the grout on the behavior of the cylindrical half-grouted splice sleeve. The half-grouted splice sleeve, consisting of a threaded end and a grouted sleeve end, is a mechanical connector that can be made by milling instead of casting. The grade of rebar is SD600 D22, and the material of the sleeve is SM45C. The development length of rebar inside the sleeve is 7.5d (d: rebar diameter), which is the same in all analysis models. Additionally, true stress and ductile damage conditions are used to simulate the nonlinear behavior and fracture of rebars. The structural behavior of the spliced rebar system for four sleeve diameters (cover thickness rebar: about 3, 6, 12, 18 mm) and two types of grout compressive strength (60, 100 MPa) is calculated using finite element analysis software Abaqus/Explicit. As a result of the analysis, the effect of sleeve diameter size on the failure mode, the yield length of the rebar, and the yield of the sleeve cross-section is significant, but the effect of grout strength on the structural behavior of the splice sleeve is very small.

키워드

과제정보

이 연구는 2023년도 한국건설기술연구원(KICT)의 연구비 지원에 의한 결과의 일부임. 과제번호 [KICT] 20230176-001

참고문헌

  1. Amleh, L. (2000). Bond Deterioration of Reinforcing Steel in Concrete due to Corrosion, Ph.D. thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Canada. 
  2. Amleh, L., & Ghosh, A. (2006). Modeling the Effect of Corrosion on Bond Strength at the Steel-Concrete Interface with Finite-Element Analysis, Canadian Journal of Civil Engineering, 33, 673-682. 
  3. Carreira, D. J.. & Chu, K. H. (1985). Stress-Strain Relationship for Plain Concrete in Compression, ACI Journal Proceedings, 82(6), 797-804. 
  4. Einea, A., Yamane, T., & Tadros, M. K. (1995). Groutfilled Pipe Splices for Precast Concrete Construction, PCI Journal, 40, 82-93. 
  5. Gao, Q., & Zhao, W. (2021). Experimental Study on Factors Influencing the Connection Performance of Grouted Welded Sleeves under Uniaxial Tensile Loads, Journal of Building Engineering, 43, 1-12. 
  6. Guler, K., Demir, F., & Pakdamar, F. (2012). Stress-Strain Modelling of High Strength Concrete by Fuzzy Logic Approach, Construction and Building Materials, 37, 680-684.  https://doi.org/10.1016/j.conbuildmat.2012.07.069
  7. Hayashi, Y., Shimizu, R., Nakatsuka, T., & Suzuki, K. (1994). Bond Stress-Slip Characteristics of Reinforcing Bars in Grout-Filled Coupling Steel Sleeves, Journal of Structural and Construction Engineering, 59(462), 131-139. 
  8. Heo, J. H., & Kim, H. S. (2018). Bending Moment Calculation Method and Optimum Element Size for Finite Element Analysis with Continuum Elements, Journal of the Computational Structural Engineering Institute of Korea, 31(1), 9-16.  https://doi.org/10.7734/COSEIK.2018.31.1.9
  9. Hsu, T. T. C., & Mo, Y. L (2010). Unified theory of concrete structures, 2nd edition, John Wiley & Sons Inc. 
  10. Kim, Y. M. (2000). A Study of Pipe Splice Sleeves for Use in Precast Beam-Column Connections, Master Thesis, The University of Texas at Austin, USA. 
  11. Kim, H. K. (2004). Study on Load Transfer Precess and Design of Mortar Grouted Splice Sleeve, Journal of the Architectural Institute of Korea, 20(12), 19-26. 
  12. Kang, D. M., Park, Y. G. Lee, H. G., & Moon, D. Y. (2017). Experimental Studies on Bond and Splice Performance of Splice Sleeve for Connecting Reb, Journal of The Korean Society for Railway, 20(2), 257-264.  https://doi.org/10.7782/JKSR.2017.20.2.257
  13. Lee, S. S. (2022). Structural Behavior of Precast Concrete Wall Panels with Horizontal Connection using Threaded Rebar, Journal of the Architectural Institute of Korea, 38(5), 215-222.  https://doi.org/10.5659/JAIK.2022.38.5.215
  14. Lee, S. S., & Bae, K. W. (2003). An Experimental Study on Structural Performance of Splice of Reinforcement with H.S.S. (Hybrid Splice Sleeve), Journal of the Architectural Institute of Korea, 19(1), 37-44. 
  15. Lee, S. S., & Chun, H. M. (2018). Development of Filler Type Mechanical Splice for High Strength Re-bar, Journal of Korea Academia-Industrial cooperation Society, 19(1), 686-693.
  16. Lee, Y. H., Song, J. J., Cho, J. Y., & Kim, D. H. (2011). Development of Non-Shrink Mortar Grouting Type Splice Sleeve, Journal of Korean Society of Hazard Mitigation, 11(2), 67-73. 
  17. Oh, K. N., Lee, J. L., Kim, J. S., Kim, H. K., Yoo, S. K., & Park, B. M. (2005). An Experimental Study on the Structural Performance of Steel Pipe Splice Sleeve for the High Strength Reinforcing Bar(SD500), Proceedings of the Architectural Institute of Korea, 25(2), 445-448. 
  18. Oh, J. H., & Moon J. H. (2013). Analytical and Experimental Studies on Splice Sleeve for SD500 Rebars, Journal of the Korea Concrete Institute, 25(2), 165-173.  https://doi.org/10.4334/JKCI.2013.25.2.165
  19. Park, J. Y., Hwang, S. W., Oh, J. H., Kim, J. H., & Park, Y. S. (2016). Development of Steel Pipe Sleeve for High-Strength Reinforcing Bar, Proceedings of the Korea Concrete Institute Conference, 28(2), 95-96. 
  20. Pei, W. L., Nam, B. R., Kim, S. K., & Seo, S. Y. (2014). Optimal Design Proposal of the Splice Sleeve with Finite Element Analysis, Journal of Construction and Environment Research Institute, Chungwoon University, 9(2), 237-244. 
  21. Seo, S. Y., Nam, B. R., & Kim, S. K. (2016). Tensile strength of the grout-filled head-splice-sleeve, Construction and Building Materials, 124, 155-166.  https://doi.org/10.1016/j.conbuildmat.2016.07.028
  22. Tu, S., Ren, X., He, J., & Zhang, Z. (2020). Stress-Strain Curves of Metallic Materials and Post-Necking Strain Hardening Characterization: A review, Fatigue & Fracture of Engineering Materials & Structures, 43(1), 1-19.  https://doi.org/10.1111/ffe.13052