DOI QR코드

DOI QR Code

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye (School of Civil Engineering, Southwest Jiaotong University) ;
  • Wenchao Wang (School of Civil Engineering, Southwest Jiaotong University) ;
  • Ao Huang (School of Civil Engineering, Southwest Jiaotong University) ;
  • Zhengyuan Wang (School of Civil Engineering, Southwest Jiaotong University)
  • Received : 2023.01.05
  • Accepted : 2023.07.11
  • Published : 2023.07.25

Abstract

The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Keywords

Acknowledgement

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (No. 52278219).

References

  1. AASHTO (2014), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials; Washington, DC, USA.
  2. An, L. and Cederwall, K. (1996), "Push-out Tests on studs in high strength and normal strength concrete", J. Constr. Steel. Res., 36(1), 15-29. https://doi.org/10.1016/0143-974X(94)00036-H.
  3. Badie, S.S., Tadros, M.K., Kakish, H.F., Splittgerber, D.L. and Baishya, M.C. (2002), "Large shear studs for composite action in steel bridge girders", J. Bridge. Eng., 7(3), 195-203. https://doi.org/10.1061/(ASCE)1084-0702(2002)7:3(195).
  4. BS EN ISO 13918 (2018), Welding - Studs and ceramic ferrules for arc stud welding, European Committee for Standardization; Brussels, Belgium.
  5. Chen, W.T., Bai, X.M., Xu, T.F., Ke S.S., Deng, K.L. and Xie, H.Q. (2021), "Damage control of a twin-column pier with a replaceable steel shear link in a cap beam under transverse seismic motion", Adv. Bridge. Eng., 2(1), 1-16. https://doi.org/10.1186/s43251-020-00031-6.
  6. Eurocode 3 (2005), Design of Steel Structures, Part 1-9: Fatigue, European Committee for Standardization; Brussels, Belgium.
  7. Eurocode 4 (2005), Design of Composite Steel and Concrete Structures, European Committee for Standardization, Brussels, Belgium.
  8. Guezouli, S. and Lachal, A. (2012), "Numerical analysis of frictional contact effects in Push-out tests", Eng. Struct., 40, 39-50. https://doi.org/10.1016/j.engstruct.2012.02.025.
  9. Guezouli, S., Lachal, A. and Nguyen, Q.H. (2013), "Numerical investigation of internal force transfer mechanism in Push-out tests", Eng. Struct., 52, 140-152. https://doi.org/10.1016/j.engstruct.2013.02.021.
  10. Han, Q., Wang, Y., Xu, J. and Xing, Y. (2015), "Static behavior of stud shear connectors in elastic concrete-steel composite beams", J. Constr. Steel. Res., 113, 115-126. https://doi.org/10.1016/j.jcsr.2015.06.006.
  11. Hu, Y., Qiu, M., Chen, L., Zhong, R. and Wang, J. (2021), "Experimental and analytical study of the shear strength and stiffness of studs embedded in high strength concrete", Eng. Struct., 236, 111792. https://doi.org/10.1016/j.engstruct.2020.111792.
  12. Hu, Y., Zhao, G., He, Z., Qi, J. and Wang, J. (2020), "Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC", Steel Compos. Struct., 36(1), 103-118. https://doi.org/10.12989/scs.2020.36.1.000.
  13. JGT 472-2015 (2015), Steel Fiber Reinforced Concrete Standard, China Standards Press, Beijing, China.
  14. JSSC (1996), Standard on Push-Out Test for Headed Stud (draft), Japanese Society of Steel Construction, Tokyo, Japan.
  15. Kim, J.S., Kwark, J., Joh, C., Yoo, S.W. and Lee, K.C. (2015), "Headed stud shear connector for thin ultrahigh-performance concrete bridge deck", J. Constr. Steel. Res., 108, 23-30. https://doi.org/10.1016/j.jcsr.2015.02.001.
  16. Kumar, P. and Chaudary, S. (2019), "Effect of reinforcement detailing on performance of composite connections with headed studs", Eng. Struct., 179, 476-492. https://doi.org/10.1016/j.engstruct.2018.05.069.
  17. Lam, D. and EI-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", J. Struct. Eng., 131(1), 96-107. https://doi.org/10.1061/(ASCE)0733- 9445(2005)131:1(96).
  18. Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges", J. Constr. Steel. Res., 61(9), 1270-1285. https://doi.org/10.1016/j.jcsr.2005.01.007.
  19. Lok, T.S. and Xiao, J.R. (1999), "Flexural strength assessment of steel fiber reinforced concrete", J. Mater. Civ. Eng., 11(3), 188-196. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(188).
  20. Luo, Y., Hoki, K., Hayashi, K. and Nakashima, M. (2016), "Behavior and strength of headed stud-SFRCC shear connection. I: Experimental study", J. Struct. Eng., 142(2), 4015112-1-4015112-10. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001363.
  21. MTPRC (2015), Specification for Design of Highway Steel Bridge, People Communications Press, Beijing, China.
  22. Oehlers, D.J. (1989), "Splitting induced by shear connectors in composite beams", J. Struct. Eng., 115(2), 341-362. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2004).
  23. Oehlers, D.J. and Park, S.M. (1992), "Shear connectors in composite beams with longitudinally cracked slabs", J. Struct. Eng., 118(8), 2004-2022. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2004).
  24. Oliveira Junior, L.A.D., Borges, V.E.D.S., Danin, A.R., Machado, D.V.R., Araujo, D.D.L., El Debs, M.K. and Rodrigues, P.F. (2010), "Stress-strain curves for steel fiber-reinforced concrete in compression", Materia (Rio de Janeiro), 15, 260-266. https://doi.org/10.1590/S1517-70762010000200025.
  25. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011.
  26. Tong, L., Chen, L., Wen, M. and Xu, C. (2020), "Static behavior of stud shear connectors in high-strength-steel-UHPC composite beams", Eng. Struct., 218, 110827. https://doi.org/10.1016/j.engstruct.2020.110827.
  27. Wang, J., Qi, J., Tong, T., Xu, Q. and Xiu, H. (2018a), "Static behavior of large stud shear connectors in steel-UHPC composite structures", Eng. Struct., 178, 534-542. https://doi.org/ 10.1016/j.engstruct.2018.07.058.
  28. Wang, J., Xu, Q., Yao, Y., Qi, J. and Xiu, H. (2018b), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206, 202-214. https://doi.org/10.1016/j.compstruct.2018.08.038.
  29. Xu, C., Sugiura, K., Wu, C. and Su, Q. (2012), "Parametrical static analysis on group studs with typical Push-out tests", J. Constr. Steel. Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029.
  30. Xue, W., Ding, M., Wang, H. and Luo, Z. (2008), "Static behavior and theoretical model of stud shear connectors", J. Bridge. Eng., 13(6), 623-634. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(623).
  31. Ye, H., Huang, R., Tang, S.Q., Zhou, Y. and Liu, J.L. (2022), "Determination of shear stiffness for headed-stud shear connectors using energy balance approach", Steel Compos. Struct., 42(4), 477. https://doi.org/10.12989/scs.2022.42.4.477.
  32. Zhang, J., Hu, X., Fu, W., Du, H., Sun, Q. and Zhang, Q. (2020), "Experimental and theoretical study on longitudinal shear behavior of steel-concrete composite beams", J. Constr. Steel. Res., 171, 106144. https://doi.org/10.1016/j.jcsr.2020.106144.
  33. Zou, X., Feng, P. and Wang, J. (2018), "Bolted shear connection of FRP-concrete hybrid beams", J. Compos. Constr., 24(3), 04018012. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000845.
  34. Zou, X., Lin, H., Feng, P., Bao, Y. and Wang, J. (2021), "A review on FRP-concrete hybrid sections for bridge applications", Compos. Struct., 262, 113336. https://doi.org/10.1016/j.compstruct.2020.113336.