DOI QR코드

DOI QR Code

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • 투고 : 2023.04.08
  • 심사 : 2023.07.06
  • 발행 : 2023.08.25

초록

Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

키워드

참고문헌

  1. Akbas. B., O'Rourke, M., Uckan, E., Shen, J. and Caglar, M. (2015), "Performance-based design of buried steel pipes at fault crossings", Proceedings of the ASME 2015 Press. and Vessels & Piping Conf, Boston, Massachusetts, USA, July.
  2. Anastasopoulos, I., Gazetas, G., M, Bransby M.F., Davies M.C.R. and El Nahas, A. (2007), "Fault rupture propagation through sand: finite element analysis and validation through centrifuge experiments", J Geotech Geo-environ Eng. ASCE, 133(8), 943-58. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943).
  3. ANSI/API Spec 5L, Specification for line pipe (2007), 44th ed. American Petroleum Institute, USA.
  4. ANSI/ASME B31.8 (2007), American Society of Mech Eng. Gas transmission and distribution piping systems.
  5. Banushi, G., Squeglia, N. and Thiele, K. (2018), "Innovative analysis of a buried operating pipeline subjected to strike-slip fault movement", Soil Dyn. Earthq. Eng., 107, 234-249. https://doi.org/10.1016/j.soildyn.2018.01.015.
  6. CSA-Z662 (2007), Canadian Standard Association, Oil and gas pipeline systems, Mississauga, Ontario, Canada.
  7. Cundall, P.A. (2008), FLAC3D Manual: a Computer Program for Fast Lagrangian Analysis of Continua (Version 4.0), Minneapolis Uni., MN, USA.
  8. Chaudhari, V., Kumar, V.D.K. and Kumar, R.P. (2013), "Finite element analysis of buried continuous pipeline subjected to fault motion", Int. J. Struct. Eng., 4(4), 314-331. https://doi.org/10.1504/IJSTRUCTE.2013.056981
  9. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element AnalysiS (3rd Ed., John Wiley & Sons, Inc., NY, USA.
  10. Desmod, T.P., Power, M.S., Taylor, C.L. and Lau, R.W. (1995), "Behavior of large-diameter pipeline at fault crossings", Proceedings of the 4. U.S. Conference on Lifeline Earthquake Engineering, San Francisco, CA, USA, Aug.
  11. Dey, S., Chakraborty, S. and Tesfamariam, S. (2020), "Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model", Soil Dyn. Earthq. Eng., 135, 106180. https://doi.org/10.1016/j.soildyn.2020.106180.
  12. Erenson, C. and Terzi, N.U. (2022), "The effects of half-section waste tire reinforcement on pipe deformation behavior", Geomech. Eng., 30(6), 517-524. https://doi.org/10.12989/gae.2022.30.6.517.
  13. EN 1998-4 (2006) Design of structures for earthquake resistance-Part 4: Silos, tanks and pipelines, Eurocode 8 (2003), European Committee for Standardization (CEN), Eur Comm Norm Brussels.
  14. Gresnigt, A.M. and Karamanos, S.A. (2009), "Local buckling strength and deformation capacity of pipes", Proceedings of the 19th International Offshore and Polar Engineering Conference, Osaka, Japan, Jully.
  15. Hashash, Y.M.A., Hook J.J., Schmidt, B. and I-Chiang Yao, J. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 16, 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7.
  16. Joshi, S., Prashant, A., Deb, A. and Jain, S.K. (2011), "Analysis of buried pipelines subjected to reverse fault motion", Soil Dyn. Earthq. Eng., 31(7), 930-940. https://doi.org/10.1016/j.soildyn.2011.02.003.
  17. Karamitros, D.K., Bouckovalas, G.D. and Kouretzis, G.P. (2007), "Stress analysis of buried steel pipelines at strike-slip fault crossings", Soil Dyn. Earthq. Eng., 27(3), 200-211. https://doi.org/10.1016/j.soildyn.2006.08.001.
  18. Karamanos, S.A., Sarvanis, G.C., Keil, B.D. and Card, R.J. (2014), "Analysis and design of buried steel water pipelines in seismic areas", J. Pipeline Sys. Eng. Pract., 8(4), 04017018. https://doi.org/10.1061/(asce)ps.1949-1204.0000280.
  19. Karamitros, D.K., Bouckovalas, G.D., Kouretzis, G.P. and Gkesouli, V. (2011), "An analytical method for strength verification of buried steel pipelines at normal fault crossings", Soil Dyn. Earthq. Eng., 31(11), 1452-1464. https://doi.org/10.1016/j.soildyn.2011.05.012.
  20. Kaya, E.S., Uckan, E., Cakir, F. and Akbas, B. (2015), "A 3D nonlinear numerical analysis of buried steel pipes at strike-slip fault crossings", Gradevinar, 6(8), 815-823. https://doi.org/10.14256/JCE.1317.2015.
  21. Kennedy, R.P., Chow, A.W. and Williamson, R.A. (1977), "Fault movement effects on buried oil pipeline", J. Transport. Eng. ASCE, 103, 617-633. https://doi.org/10.1061/TPEJAN.0000659.
  22. Khoshghalb, A., Shafee, A. Tootoonchi, A., Ghaffaripour O. and Jazaeri S.A. (2020). "Application of the smoothed point interpolation methods in computational geomechanics: A comparative study", Comput. Geotech., 126, 103714. https://doi.org/10.1016/j.compgeo.2020.103714.
  23. Kokavessis, N.K. and Anagnostidis, G.S. (2006), "Finite element modelling of buried pipelines subjected to seismic loads: soil structure interaction using contact elements", Proceedings of the ASME PVP Conf, Vancouver, BC, Canada, January.
  24. Liu, A., Hu, Y., Zhao, F., Li, X., Takada, S. and Zhao, L. (2004), "An equivalent-boundary method for the shell analysis of buried pipelines under fault movement", Acta Seismologica Sinica, 17(1), 150-156. https://doi.org/10.1007/s11589-004-0078-1.
  25. Liu, M., Wang, Y.Y. and Yu, Z. (2008), "Response of pipelines under fault crossing", Proceedings of the 18. International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, Jully.
  26. MaCaffrey, M.A. and O'Rourke T.D. (1983), "Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake", Proceedings of the ASME, PVP Conference, USA.
  27. Melissianos, V.E. and Gantes, C.J. (2017), "Numerical modeling aspects of buried pipeline-fault crossing", Comput. Method. Earthq. Eng., 3, 1-26. https://doi.org/10.1007/978-3-319-47798-5_1.
  28. Melissianos, V.E., Vamvatsikos, D. and Gantes, C. (2020), "Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture", Soil Dyn. Earthq. Eng., 135, 101-116. https://doi.org/10.1016/j.soildyn.2020.106116.
  29. Mohitpour, M., Golshan, H. and Murray. A. (2007), Pipeline Design & Construction: a Practical Approach, (3rd Ed.), ASME Press, New York, NY, USA.
  30. Morshed, A., Roy, K. and Hawlader, B. (2020), "Modeling of buried pipelines in dense sand for oblique movement in vertical - lateral plane", J. Pipeline Sys. Eng. Pract., 11(4), 04020050. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000499.
  31. NEN 3650 (2006), part-1: general, and part-2, Nederlands Normalisatie-Instituut. Requirements for pipelines systems steel pipelines, Nederlands.
  32. Newmark, N.M. and Hall, W.J. (1979), "Pipeline design to resist large fault displacement", Proceedings of the 1 st National Commission on Excellence in Education, DC, USA.
  33. O'Rourke, M.J. (2009), "Wave propagation damage to continuous pipe", Proceedings of the Tech. Counc. Lifeline Earthq. Eng. Conf. (TCLEE), Oakland, CA, USA, June-July. https://doi.org/10.1061/41050(357)76.
  34. O'Rourke, T.D., Roth, B., Miura, F. and Hamada, M. (1990), "Case history of high-pressure pipeline response to liquefaction-Induced ground movements", Proceedings of the 4th U.S. Natl. Conf. Earthq. Eng., Palm Springs, CA, USA, May.
  35. O'Rourke, M.J. and Liu, X. (1999), Response of Buried Pipelines Subject to Earthquake Effects, Monograph series, Multidisciplinary center for earthquake engineering research, University of Buffalo, USA.
  36. Ozcebe, A.G., Paolucci, R., Mariani, S. and Santoro, D. (2015), "A numerical study of the pressurized gas pipeline-normal fault interaction problem", Proceedings of the 6th Int Conf on Earthq Geotech Eng, Christchurch, New Zealand, November.
  37. Rahman, M.A. and Taniyama, H. (2015), "Analysis of a buried pipeline subjected to fault displacement: A DEM and FEM study", Soil Dyn. Earthq. Eng., 71, 49-62. https://doi.org/10.1016/j.soildyn.2015.01.011.
  38. Roudsari, M.T., Hosseini, M., Ashrafy. M., Azin, M., Nasimi, M., Torkaman, M. and Khorsandi, A. (2019), "New method to evaluate the buried pipeline-sandy soil interaction subjected to strike slip faulting", J. Earthq. Eng., 26(1), 89-112. https://doi.org/10.1080/13632469.2019.1662343.
  39. Salehi Dezfooli, M., Khoshghalb A. and Shafee, A. (2022). "An automatic adaptive edge-based smoothed point interpolation method for coupled flow-deformation analysis of saturated porous media", Comput. Geotech., 145, 104672. https://doi.org/10.1016/j.compgeo.2022.104672.
  40. Sarvanis, G.C. and Karamanos, S.A. (2017), "Analytical model for the strain analysis of continuous buried pipelines in geohazard areas", Eng. Struct,. 152, 57-69. https://doi.org/10.1016/j.engstruct.2017.08.060.
  41. Shafee, A. and Khoshghalb A. (2021), "An improved node-based smoothed point interpolation method for coupled hydromechanical problems in geomechanics", Comput. Geotech., 139, 104415. https://doi.org/10.1016/j.compgeo.2021.104415.
  42. Shafee, A. and A. Khoshghalb (2022). "Particle node-based smoothed point interpolation method with stress regularisation for large deformation problems in geomechanics", Comput. Geotech., 141, 104494. https://doi.org/10.1016/j.compgeo.2021.104494.
  43. Shi, J., Wang, J., Ji, X., Liu, H. and Lu, H. (2022), "Three-dimensional numerical parametric study of tunneling effects on existing pipelines", Geomech. Eng., 30(4), 383-392. https://doi.org/10.12989/gae.2022.30.4.383.
  44. Shokouhi, S.K.S., Dolatshah, A. and Ghobakhloo, E. (2013), "Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach", Earthq. Struct., 5(4), 417-438. https://doi.org/10.12989/eas.2013.5.4.417.
  45. Talebi, F. and Kiyono, J. (2021), "A refined nonlinear analytical method for buried pipelines crossing strike-slip faults", Earthq. Eng. Struct. D., 50, 2915-2938. https://doi.org/10.1002/eqe.3479.
  46. Takada, S., Liang, J. and Li, T. (1998), "Shell-mode response of buried pipelines to large fault movements", Struct Eng. JSCE, 44(A), 1637-1646.
  47. Tohidi, R.Z. and Shakib, H. (2003), "Response of steel buried pipeline to the three-dimensional fault movements", J Sci. Technol., 14 (56), 1127-1135.
  48. Toprak, S., Cetin, O.A., Nacaroglu, E. and Koc, A.C. (2010), "Pipeline performance under longitudinal permanent ground deformation", Proceedings of the 14th ECEE, Ohrid, Macedonia, March.
  49. Trifonov, O.V. (2015), "Numerical stress-strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects", J. Pipeline Sys. Eng. Pract., 6(1), 1-10. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000177.
  50. Trifonov, O.V. and Cherniy, V.P. (2010), "A semi-analytical approach to a nonlinear stress-strain analysis of buried steel pipelines crossing active faults", Soil Dyn. Earthq. Eng., 30(11), 1298-1308. https://doi.org/10.1016/j.soildyn.2010.06.002.
  51. Trifonov, O.V. and Cherniy, V.P. (2012), "Elastoplastic stress-strain analysis of buried steel pipelines subjected to fault displacements with account for service loads", Soil Dyn. Earthq. Eng., 33, 54-62. https://doi.org/10.1016/j.soildyn.2011.10.001.
  52. Vazouras, P., Dakoulas, P. and Karamanos, S.A. (2015), "Pipe-soil interaction and pipeline performance under strike-slip fault movements", Soil Dyn. Earthq. Eng., 72, 48-65. https://doi.org/10.1016/j.soildyn.2015.01.014.
  53. Vazouras, P. and Karamanos, S.A. (2017), "Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas", Bull. Earthq. Eng., 15, 4999-5024. https://doi.org/10.1007/s10518-017-0148-0.
  54. Vazouras. P., Karamanos, S.A. and Dakoulas, P. (2010), "Finite element analysis of buried steel pipelines under strike-slip fault displacements", Soil Dyn. Earthq. Eng., 30(11), 1361-1376. https://doi.org/10.1016/j.soildyn.2010.06.011.
  55. Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2012), "Mechanical behavior of buried steel pipes crossing active strike-slip faults", Soil Dyn. Earthq. Eng., 41(11), 164-180. https://doi.org/10.1016/j.soildyn.2012.05.012.
  56. Wang, L.R.L. and Yeh, Y.A. (1985), "A refined seismic analysis and design of buried pipeline for fault movement", Earthq. Eng. Struct. D., 13, 75-96. https://doi.org/10.1002/eqe.4290130109.
  57. Xu, J. and She, G. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  58. Yigit, A. (2022), "Response of segmented pipelines subject to earthquake effects", Geomech. Eng., 30(4), 353-362. https://doi.org/10.12989/gae.2022.30.4.353.