DOI QR코드

DOI QR Code

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Youngkyu Cho (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Hwanwoo Seo (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Byungmin Kim (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.03.03
  • Accepted : 2023.06.27
  • Published : 2023.08.25

Abstract

This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (NFR--2020R1C1C1013317) and the Korea Meteorological Administration Research and Development Program (PJ0013282021).

References

  1. Anderson, D.G., Martin, G.R., Lam, I.P. and Wang, J.N.J.N.R. (2009), Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments.
  2. Argyroudis, S., Kaynia, A.M. and Pitilakis, K. (2013), "Development of fragility functions for geotechnical constructions: Application to cantilever retaining walls", Soil Dyn. Earthq. Eng., 50, 106-116. https://doi.org/10.1016/j.soildyn.2013.02.014
  3. BSSC (2000), The 2000 NEHRP recommended provisions for new buildings and other structures, Part1 (provisions) and Part2 (commentary), 368/369. Washington, D.C: FEMA; 2001.
  4. Campbell, K.W. and Bozorgnia, Y. (2012), "A comparison of ground motion prediction equations for arias intensity and cumulative absolute velocity developed using a consistent database and functional form", Earthq. Spectra, 28(3), 931-941. https://doi.org/10.1193/1.4000067.
  5. CEN (2004), European Committe for Standardization (CEN). EC8 Eurocode 8: design of structures for earthquake resistance. In: Seismic actions and rules for buildings, stage 49 draft. Brussels: Comite Europeen de Normalisation; 2004.
  6. Chen, G., Li, Y., Zhang, Y. and Wu, J. (2012), Earthquake Induced a Chain Disasters, Earthquake Research and Analysis - Statistical Studies, Observations and Planning.
  7. Chiou, J.S., Chiang, C.H., Yang, H.H. and Hsu, S.Y. (2011), "Developing fragility curves for a pile-supported wharf", Soil Dyn. Earthq. Eng., 31(5-6), 830-840. https://doi.org/10.1016/j.soildyn.2011.01.011.
  8. Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng., 128(4), 526-533. https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526).
  9. Crowley, H., Pinho, R. and Bommer, J.J. (2004), "A probabilistic displacement-based vulnerability assessment procedure for earthquake loss estimation", Bull. Earthq. Eng., 2, 173-219. https://doi.org/10.1007/s10518-004-2290-8.
  10. Cundall, P., Hansteen, H., Lacasse, S. and Selnes, P. (1980), NESSI: soil structure interaction program for dynamic and statistic problems. Report 51508-9, December, Norwegian Geotechnical Institute.
  11. Darendeli (2001), Development of a new famili of normalized modulus reduction and material damping.
  12. EERI, S.E.R. (2010), The Mw 7.1 Darfield (Canterbury), New Zealand Earthquake of September 4, 2010.
  13. El-Maissi, A.M., Argyroudis, S.A. and Nazri, F.M. (2020), "Seismic vulnerability Assessment methodologies for roadway assets and networks: A state-of-the-art review", Sustainability, 13(1). https://doi.org/10.3390/su13010061.
  14. Erberik, M.A. (2015), Seismic Fragility Analysis, Encyclopedia of Earthquake Engineering, 1-10.
  15. Fotopoulou, S.D. and Pitilakis, K.D. (2013), "Fragility curves for reinforced concrete buildings to seismically triggered slow-moving slides", Soil Dyn. Earthq. Eng., 48, 143-161. https://doi.org/10.1016/j.soildyn.2013.01.004.
  16. Fotopoulou, S.D. and Pitilakis, K.D. (2015), "Predictive relationships for seismically induced slope displacements using numerical analysis results", Bull. Earthq. Eng., 13(11), 3207-3238. https://doi.org/10.1007/s10518-015-9768-4.
  17. Hariri-Ardebili, M.A. and Saouma, V.E. (2016), "Probabilistic seismic demand model and optimal intensity measure for concrete dams", Struct. Saf., 59, 67-85. https://doi.org/10.1016/j.strusafe.2015.12.001
  18. HAZUS-MH (2003), Federal Emergency Management Agency (FEMA). HAZUS-MH MR4 Technical Manual. Natl Inst Build Sci Fed Emerg Manag Agency (NIBS FEMA) 2003.
  19. Hu, H. Huang, Y. and Chen, Z. (2019), "Seismic fragility functions for slope stability analysis with multiple vulnerability states", Environ. Earth Sci., 78(24), https://doi.org/10.1007/s12665-019-8696-z.
  20. Hu, J. and Pang, L. (2023), "Identifying the optimal intensity measure and key factors of earthquake liquefaction-induced uplift of underground structures", Bull. Eng. Geol. Environ., 82(1). https://doi.org/10.1007/s10064-022-03057-4.
  21. Jafarian, Y. and Miraei, M. (2019), "Scalar- and vector-valued fragility analyses of gravity quay wall on liquefiable soil: Example of Kobe port", Int. J. Geomech., 19(5). https://doi.org/10.1061/(asce)gm.1943-5622.0001382.
  22. Jibson, R.W. (2007), "Regression models for estimating coseismic landslide displacement", Eng. Geol., 91(2-4), 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013.
  23. Kim, D.S., Manandhar, S. and Cho, H.I. (2018), "New site classification system and design response spectra in Korean seismic code", Earthq. Struct., https://doi.org/10.12989/eas.2018.15.1.001.
  24. Kim, J.M. and Sitar, N. (2013), "Probabilistic evaluation of seismically induced permanent deformation of slopes", Soil Dyn. Earthq. Eng., 44, 67-77. https://doi.org/10.1016/j.soildyn.2012.09.001.
  25. Kwok, A.O.L., Stewart, J.P., Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z., Yang, Z.J.J.O.G. and Engineering, G. (2007), "Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures", J. Geotech. Geoenviron. Eng., 133(11), 1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385).
  26. Latha, G.M. and Garaga, A. (2010), "Seismic stability analysis of a Himalayan rock slope", Rock Mech. Rock Eng., 43(6), 831-843. https://doi.org/10.1007/s00603-010-0088-3.
  27. Lee, M.G., Ha, J.G., Cho, H.I., Sun, C.G. and Kim, D.S. (2020), "Improved performance-based seismic coefficient for gravity-type quay walls based on centrifuge test results", Acta Geotechnica, 16(4), 1187-1204. https://doi.org/10.1007/s11440-020-01086-5.
  28. Lysmer, and Kuhlemeyer, (1969), Finite dynamic model for infinit midia, Engineering mechanics division, v. Proceedings of the American Siciety of Civil Engineers.
  29. Maruyama, Y., Yamazaki, F., Mizuno, K., Tsuchiya, Y. and Yogai, H. (2010), "Fragility curves for expressway embankments based on damage datasets after recent earthquakes in Japan", Soil Dyn. Earthq. Eng., 30(11), 1158-1167. https://doi.org/10.1016/j.soildyn.2010.04.024.
  30. McKenna, G., Argyroudis, S.A., Winter, M.G. and Mitoulis, S.A. (2021), "Multiple hazard fragility analysis for granular highway embankments: Moisture ingress and scour", Transport. Geotech., 26, 100431. https://doi.org/10.1016/j.trgeo.2020.100431
  31. Morales-Esteban, A., de Justo, J.L., Reyes, J., Miguel Azanon, J., Durand, P. and Martinez-Alvarez, F. (2015), "Stability analysis of a slope subject to real accelerograms by finite elements. application to San Pedro cliff at the Alhambra in Granada", Soil Dyn. Earthq. Eng., 69, 28-45. https://doi.org/10.1016/j.soildyn.2014.10.023.
  32. Nepal, G.O. (2015), Post Disaster Needs Assessment.
  33. Newmark, N. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 1965;15(2):139-160. https://doi.org/10.1680/geot.1965.15.2.139
  34. Ozmen, (2019), Modelling the variability in seismically induced slope displacements due to ground motion selection.
  35. Padgett, J.E. and DesRoches, R. (2008), "Methodology for the development of analytical fragility curves for retrofitted bridges", Earthq. Eng. Struct. D., 37(8), 1157-1174. https://doi.org/10.1002/eqe.801.
  36. Park, N.S. and Cho, S.E. (2017), "Development of fragility curves for seismic stability evaluation of cut-slopes", Korean Geotech. Soc., 33, 29-41. https://doi.org/10.7843/kgs.2017.33.7.29.
  37. Park, S., Kim, W., Lee, J. and Baek, Y. (2018), "Case study on slope stability changes caused by earthquakes-focusing on Gyeongju 5.8 ML EQ", Sustainability, 10(10). https://doi.org/10.3390/su10103441.
  38. Perez, F.G., Haydon, W.D. and Wiegers, M.O. (2012), California Geological Survey Zones of Required Investigation for Earthquake-Induced Landslides - Livermore Valley, California: Digital Mapping Techniques 10-workshop proceedings U.S. Geological Survey Open-File Report 2012-1171.
  39. PLAXIS-Manual (2022), PLAXIS 2D tutorial manual connect edition V22.
  40. Raghunandan, M. and Liel, A.B. (2013), "Effect of ground motion duration on earthquake-induced structural collapse", Struct. Saf., 41, 119-133. https://doi.org/10.1016/j.strusafe.2012.12.002.
  41. Rathje, E.M. and Antonakos, G. (2011), "A unified model for predicting earthquake-induced sliding displacements of rigid and flexible slopes", Eng. Geol., 122(1-2), 51-60. https://doi.org/10.1016/j.enggeo.2010.12.004.
  42. Rocscience (2022), Slide 2 version 9.024, (Ed., Toronto, C.), rocscience.
  43. Saygili, G. and Rathje, E.M. (2008), "Empirical predictive models for earthquake-induced sliding displacements of slopes", J. Geotech. Geoenviron. Eng. ASCE, 134(6), 790-803. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(79.
  44. Saygili, G. and Rathje, E.M. (2009), "Probabilistically based seismic landslide hazard maps: An application in Southern California", Eng. Geol., 109(3-4), 183-194. https://doi.org/10.1016/j.enggeo.2009.08.004
  45. Schuster, R.L. and Highland, L.M. (2001), Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere.
  46. Seo, H., Lee, Y.J., Park, D. and Kim, B. (2022), "Seismic fragility assessment for cantilever retaining walls with various backfill slopes in South Korea", Soil Dyn. Earthq. Eng., 161. https://doi.org/10.1016/j.soildyn.2022.107443.
  47. Shou, K.J. and Wang, C.F. (2003), "Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan", Eng. Geol., 68(3), 237-250. https://doi.org/10.1016/S0013-7952(02)00230-2
  48. Sun, C.G., Cho, C.S., Son, M. and Shin, J.S. (2012), "Correlations between shear wave velocity and in-situ penetration test results for Korean soil deposits", Pure Appl. Geophys., 170(3), 271-281. https://doi.org/10.1007/s00024-012-0516-2.
  49. Terzaghi, K. and Peck, R.B. and Mesri, G. (1967), Soil Mechanics in Engineering Practice.
  50. Travasarou, T. and Bray, J.D. (2003), "Optimal ground motion intensity measures for assessment of seismic slope displacements", Proceedings of the 2003 Pacific Conference on Earthquake Engineering.
  51. Tsompanakis, Y., Lagaros, N.D., Psarropoulos, P.N. and Georgopoulos, E.C. (2010), "Probabilistic seismic slope stability assessment of geostructures", Struct. Infrastruct. Eng., 6(1-2), 179-191. https://doi.org/10.1080/15732470802664001.
  52. Varnier, J.B. and Hatami, K. (2011), "Seismic Response of Reinforced Soil Retaining Walls: Is PGA-Based Design Adequate?", https://doi.org/10.1061/41183(418)28.
  53. Wang, F., Fan, X., Yunus, A.P., Siva Subramanian, S., Alonso-Rodriguez, A., Dai, L., Xu, Q. and Huang, R. (2019), "Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism", Landslides, 16(8), 1551-1566. https://doi.org/10.1007/s10346-019-01187-7.
  54. Wei, M., Fang, S. J., Chen, S., Lin, R.Y., Huang, Y. and Yang, L. (2022), "Resilience assessment of road networks in the extremely severe disaster areas of the Wenchuan earthquake", Front. Earth Sci., 10. https://doi.org/10.3389/feart.2022.834302.
  55. Wen, Y.K., Ellingwood, B.R. and Bracci, J.M. (2004), Vulnerability function framework for consequence-based engineering.
  56. Wu, X.Z. (2014), "Development of fragility functions for slope instability analysis", Landslides, 12(1), 165-175. https://doi.org/10.1007/s10346-014-0536-3.
  57. Zamiran, S. and Osouli, A. (2018), "Seismic motion response and fragility analyses of cantilever retaining walls with cohesive backfill", Soils Found., 58(2), 412-426. https://doi.org/10.1016/j.sandf.2018.02.010
  58. Zhang, H.Y., Zhang, L.J., Wang, H.J. and Guan, C.N. (2018), "Influences of the duration and frequency content of ground motions on the seismic performance of high-rise intake towers", Eng. Fail. Anal., 91, 481-495. https://doi.org/10.1016/j.engfailanal.2018.04.039
  59. Zhang, Y., Chen, G., Wu, J., Zheng, L. and Zhuang, X. (2012), "Numerical simulation of seismic slope stability analysis based on tension-shear failure mechanism", Geotech. Eng., 43(2).
  60. Zhang, Y., Fan, J. and Fan, W. (2016), "Seismic fragility analysis of concrete bridge piers reinforced by steel fibers", Adv. Struct. Eng., 19(5), 837-848. https://doi.org/10.1177/1369433216630440.