DOI QR코드

DOI QR Code

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary (Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University) ;
  • Kshitij C. Shrestha (Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University) ;
  • Ojaswi Acharya (Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University)
  • Received : 2023.05.09
  • Accepted : 2023.07.06
  • Published : 2023.08.25

Abstract

Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.

Keywords

References

  1. Acharya, O., Dahal, A. and Shrestha, K.C. (2023), "Confined masonry in seismic regions: Application to a prototype building in Nepal", Struct., 47, 2281-2299. https://doi.org/10.1016/j.istruc.2022.12.045.
  2. Akhoondi, M.R. and Behnamfar, F. (2021), "Seismic fragility curves of steel structures including soil-structure interaction and variation of soil parameters", Soil Dyn. Earthq. Eng., 143, 106609. https://doi.org/10.1016/J.SOILDYN.2021.106609.
  3. Arefi, M.J., Pampanin, S. and Cubrinovski, M. (2009), "Effects of SSI on the seismic response of older structures before and after retrofit", Proceedings of the 2009 NZSEE conference, Christchurch, New Zealand, April.
  4. ASCE Standard (2017), ASCE/SEI 41-17: Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, VA, USA.
  5. Awlla, H.A., Taher, N.R. and Mawlood, Y. (2020), "Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures", Int. J. Emerg. Trend. Eng. Res., 8(9), 6298-6305. https://doi.org/10.30534/IJETER/2020/223892020.
  6. Bandyopadhyay, S., Parulekar, Y.M. and Sengupta, A. (2023), "MSA-based seismic fragility analysis of RC structures considering soil nonlinearity effects and time histories compatible to uniform hazard spectra", Struct., 54, 330-347. https://doi.org/10.1016/J.ISTRUC.2023.05.076.
  7. Biva, G. and Huanjun, J. (2023), "Comparison of seismic fragility of RC moment-resisting frame structures designed according to Chinese and Indian code", Struct., 50, 347-358. https://doi.org/10.1016/J.ISTRUC.2023.02.053.
  8. Ceroni, F., Sica, S., Rosaria Pecce, M. and Garofano, A. (2014), "Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI", Soil Dyn. Earthq. Eng., 64, 95-101. https://doi.org/10.1016/J.SOILDYN.2014.05.003.
  9. Chhetri, S.K. and Thapa, K.B. (2015), "Soil structure interaction and seismic design code provision", Proceedings of 3rd IOE Graduate Conference, Kathmandu, Nepal, December.
  10. Ciampoli, M. and Pinto, P.E. (1995), "Effects of soil-structure interaction on inelastic seismic response of bridge piers", J. Struct. Eng., 121(5), 806-814. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:5(806).
  11. Fajfar, P. and Fischinger, M. (1988), "N2-A method for nonlinear seismic analysis of regular buildings", 9 th World Conference in Earthquake Engineering, Tokyo-Kyoto, Japan, August.
  12. FEMA (2003), HAZUS®MH MR4 Earthquake Model Technical Manual, Department of Homeland Security, FEMA Mitigation Division, Washington, D.C., USA.
  13. FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
  14. Forcellini, D. (2021), "Analytical fragility curves of shallow-founded structures subjected to Soil-Structure Interaction (SSI) effects", Soil Dyn. Earthq. Eng., 141, 106487. https://doi.org/10.1016/J.SOILDYN.2020.106487.
  15. Forcellini, D. (2022), "Seismic fragility of tall buildings considering soil structure interaction (SSI) effects", Struct., 45, 999-1011. https://doi.org/10.1016/J.ISTRUC.2022.09.070.
  16. Gazetas, G. (1991), "Formulas and charts for impedances of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363).
  17. Ghandil, M. and Behnamfar, F. (2017), "Ductility demands of MRF structures on soft soils considering soil-structure interaction", Soil Dyn. Earthq. Eng., 92, 203-214. https://doi.org/10.1016/J.SOILDYN.2016.09.051.
  18. Hamidia, M., Shokrollahi, N. and Nasrolahi, M. (2021), "Soil-structure interaction effects on the seismic collapse capacity of steel moment-resisting frame buildings", Struct., 32, 1331-1345. https://doi.org/10.1016/J.ISTRUC.2021.03.068.
  19. Kassimali, A. (2020), Structural Analysis, Cengage, Boston, MA, USA.
  20. Kinali, K. and Ellingwood, B.R. (2007), "Seismic fragility assessment of steel frames for consequence-based engineering: A case study for Memphis, TN", Eng. Struct., 29(6), 1115-1127. https://doi.org/10.1016/J.ENGSTRUCT.2006.08.017.
  21. Krishnamoorthy, A. (2013), "Effect of soil-structure interaction for a building isolated with FPS", Earthq. Struct., 4(3), 285-297. https://doi.org/10.12989/eas.2013.4.3.285.
  22. Mark Yashinsky (1989), The Loma Prieta, California, Earthquake of October 17, 1989 - Highway Systems, U.S. Geological Survey, Reston, VA, USA.
  23. Mehrvarz, N., Khoshnoudian, F. and Hosseini, S.H. (2018), "The effect of nonlinear soil-structure interaction on fragility assessment of high-rise steel moment frames", The 9th National Conference on Structure and Steel, Teheran, Iran, May.
  24. Miranda, E. (1996), "Assessment of the vulnerability of existing buildings", Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.
  25. Mitropoulou, C.C., Kostopanagiotis, C., Kopanos, M., Ioakim, D. and Lagaros, N.D. (2016), "Influence of soil-structure interaction on fragility assessment of building structures", Struct., 6, 85-98. https://doi.org/10.1016/J.ISTRUC.2016.02.005.
  26. Mylonakis, G. and Gazetas, G. (2008), "Seismic soil-structure interaction: Beneficial or detrimental?", 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
  27. Mylonakis, G., Gazetas, G., Nikolaou, S. and Michaelides, O. (2006), The role of soil on the collapse of 18 piers of the Hanshin Expressway in the Kobe earthquake, 35(5), 547-575. https://doi.org/10.1002/eqe.543.
  28. NBC: 105 (2020), Seismic Design of Building in Nepal, National Building Code, Ministry of Urban Development, Kathmandu, Nepal.
  29. Niewiarowski, R.W. and Rojahn, C. (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Seismic Safety Commission, State of California, Sacramento, CA, USA.
  30. Pitilakis, D. and Petridis, C. (2022), "Fragility curves for existing reinforced concrete buildings, including soil-structure interaction and site amplification effects", Eng. Struct., 269, 114733. https://doi.org/10.1016/J.ENGSTRUCT.2022.114733.
  31. Qian, J. and Beskos, D.E. (1995), "Dynamic interaction between 3-D rigid surface foundations and comparison with the ATC-3 provisions", Earthq. Eng. Struct. Dyn., 24(3), 419-437. https://doi.org/10.1002/EQE.4290240309.
  32. Rajeev, P. and Tesfamariam, S. (2012), "Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction", Soil Dyn. Earthq. Eng., 40, 78-86. https://doi.org/10.1016/J.SOILDYN.2012.04.008.
  33. Requena-Garcia-Cruz, M.V., Bento, R., Durand-Neyra, P. and Morales-Esteban, A. (2022), "Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon", Struct., 38, 599-617. https://doi.org/10.1016/J.ISTRUC.2022.02.024.
  34. Saez, E., Lopez-Caballero, F. and Modaressi-Farahmand-Razavi, A. (2013), "Inelastic dynamic soil-structure interaction effects on moment-resisting frame buildings", Eng. Struct., 51, 166-177. https://doi.org/10.1016/J.ENGSTRUCT.2013.01.020.
  35. SAP2000 (2007), Integrated Software for Structural Analysis and Design, Computers and Structures Inc., Berkeley, CA, USA.
  36. Sarcheshmehpour, M., Shabanlou, M., Meghdadi, Z., Estekanchi, H.E. and Mofid, M. (2021), "Seismic evaluation of steel plate shear wall systems considering soil-structure interaction", Soil Dyn. Earthq. Eng., 145, 106738. https://doi.org/10.1016/J.SOILDYN.2021.106738.
  37. Stewart, J.P., Fenves, G.L. and Seed, R.B. (1999), "Seismic soil-structure interaction in buildings I: Analytical methods", J. Geotech. Geoenviron. Eng., 125(1), 26-37. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(26).
  38. Wen, Y., Ellingwood, B. and Bracci, J. (2004), "Vulnerability function framework for consequence-based engineering", MAE Center Report 04-04, Urbana, IL, USA.
  39. Xiong, W., Jiang, L.Z. and Li, Y.Z. (2016), "Influence of soil-structure interaction (structure-to-soil relative stiffness and mass ratio) on the fundamental period of buildings: Experimental observation and analytical verification", Bull. Earthq. Eng., 14(1), 139-160. https://doi.org/10.1007/S10518-015-9814-2.