DOI QR코드

DOI QR Code

The dynamic response of adjacent structures with the shallow foundation of different height and distance on liquefiable saturated sand

  • Jilei Hu (Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University) ;
  • Luoyan Wang (College of Civil Engineering & Architecture, China Three Gorges University) ;
  • Wenxiang Shen (College of Civil Engineering & Architecture, China Three Gorges University) ;
  • Fengjun Wei (School of Energy & Building Engineering, Shandong Huayu University of Technology) ;
  • Rendong Guo (School of Energy & Building Engineering, Shandong Huayu University of Technology) ;
  • Jing Wang (College of Civil Engineering & Architecture, China Three Gorges University)
  • Received : 2023.05.03
  • Accepted : 2023.07.20
  • Published : 2023.08.25

Abstract

The structure-soil-structure interaction (SSSI) effect in adjacent structures may affect the liquefaction-induced damage of shallow foundation structures. The existing studies only analysed the independent effects on the structural dynamic response but ignored the coupling effect of height difference and distance of adjacent structures (F) on liquefied foundations on the dynamic response. Therefore, this paper adopts finite element and finite difference coupled dynamic analysis method to discuss the effect of the F on the seismic response of shallow foundation structures. The results show that the effect of the short structure on the acceleration response of the tall structure can be neglected as F increases when the height difference reaches 2 times the height of the short structure. The beneficial effect of SSSI on short structures is weakened under strong seismic excitations, and the effect of the increase of F on the settlement ratio gradually decreases, which causes a larger rotation hazard. When the distance is smaller than the foundation width, the short structure will exceed the rotation critical value and cause structural damage. When the distance is larger than the foundation width, the rotation angle is within the safe range (0.02 rad).

Keywords

Acknowledgement

The research described in this paper was financially supported by 111 Project of Hubei Province under Grant No. 2021EJD026.

References

  1. Acacio, A.A., Kobayashi, Y., Towhata, I. and Bautista, R.T. (2001), "Subsidence of building foundation resting upon liquefiable subsoil case studies", Soils Found., 41(6), 111-128. http://doi.org/10.3208/sandf.41.6_111.
  2. Adamidis, O. and Madabhushi, S.P.G. (2018), "Deformation mechanisms under shallow foundations on liquefied layers of varying thickness", Geotechniq., 68(7), 1-13. https://doi.org/10.1680/jgeot.17.P.067.
  3. Adamidis, O. and Madabhushi, S.P.G. (2022), "Rocking response of structures with shallow foundations on thin liquefied layers", Geotechniq., 72(2), 127-145. https://doi.org/10.1680/jgeot.19.P.077.
  4. Adampira, M. and Derakhshandi, M. (2020), "Influence of a layered liquefiable soil on seismic site response using physical modeling and numerical simulation", Eng. Geol., 266, 105462. https://doi.org/10.1016/j.enggeo.2019.105462.
  5. Barrios, G., Larkin, T. and Chouw, N. (2021a), "Experimental study of the seismic response of a structure set amongst closely adjacent structures", Earthq. Eng. Struct. Dyn., 50(14), 3771-3791. https://doi.org/10.1002/eqe.3532.
  6. Barrios, G., Larkin, T. and Chouw, N. (2022), "Influence of excess pore-pressure on the seismic response of single and closely adjacent structures on saturated sand", J. Earthq. Eng., 26(16), 8280-8304. https://doi.org/10.1080/13632469.2021.1991524.
  7. Barrios, G., Uemura, K., Kikkawa, N., Itoh, K., Larkin, T., Orense, R. and Chouw, N. (2021b), "Dynamic response of stand-alone and adjacent footing on saturated sand", Soil Dyn. Earthq. Eng., 143, 106584. https://doi.org/10.1016/j.soildyn.2021.106584.
  8. Bray, J.D., Sancio, R.B., Durgunoglu, T., Onalp, A., Youd, T.L., Stewart, J.P., Seed, R.B., Cetin, K.O., Bol, E., Baturay, M.B., Christensen, C. and Karadayilar, T. (2004), "Subsurface characterization at ground failure sites in Adapazari, Turkey", J. Geotech. Geoenviron., 130(7), 673-685. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673).
  9. Bray, J.M., Cubrinovski, M., Zupan, J. and Taylor, M. (2014), "Liquefaction effects on buildings in the central business district of Christchurch", Earthq. Spectra, 30(1), 85-109. https://doi.org/10.1193/022113EQS043M.
  10. Bybordiani, M. and Arici, Y. (2019), "Structure- soil- structure interaction of adjacent buildings subjected to seismic loading", Earthq. Eng. Struct. Dyn., 48(7), 731-748. https://doi.org/10.1002/eqe.3162.
  11. Cheng, G.X. (1994), "Survey on the interfacial properties of soil and structural materials", J. World Earthq. Eng., 4(1), 1-9.
  12. Cubrinovski, M., Bradley, B., Wotherspoon, L., Green, R. and Wells, R. (2011), "Geotechnical aspects of the 22 February 2011 Christchurch earthquake", Bull. N.Z. Soc. Earthq., 44(4), 205-226. http://doi.org/10.5459/bnzsee.44.4.205-226.
  13. Dashti, S. and Bray, J.D. (2013), "Numerical simulation of building response on liquefiable sand", J. Geotech. Geoenviron., 139(8), 1235-1249. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000853.
  14. Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M. and Wilson, D. (2010), "Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil", J. Geotech. Geoenviron., 136(1), 151-164. https://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000179.
  15. Goodman, R.E., Taylor, R.L. and Brekke T.L. (1968), "A model for the mechanics of jointed rock", J. Soil Mech. Found. Div., 94(3), 637-660. https://doi.org/10.1061/JSFEAQ.0001133.
  16. Groby, J.P. and Wirgin, A. (2008), "Seismic motion in urban sites consisting of blocks in welded contact with a soft layer overlying a hard half space", Geophys. J. Int., 172(2), 725-758. https://doi.org/10.1111/j.1365-246X.2007.03678.x.
  17. Gueguen, P., Bard, P.Y., J,F. and Garcia, C. (2002), "Site-city seismic interaction in Mexico City-like environments: An analytical study", B. Seismol. Soc. Am., 92(2), 794-811. https://doi.org/10.1785/0120000306.
  18. Hayden, C.P., Zupan, J.D., Bray, J.D., Allmond, J.D. and Kutter, B.L. (2015), "Centrifuge tests of adjacent mat-supported buildings affected by Liquefaction", J. Geotech. Geoenviron., 141(3), 04014118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001253.
  19. Hu, J.L., Chen, Q.H. and Liu, H.B. (2018), "Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils", Tunn. Undergr. Sp. Tech., 79, 35-51. https://doi.org/10.1016/j.tust.2018.04.039.
  20. Huang, Y.L., Ramirez, J., Dashti, S., Kikwood, P., Camata, G. and Petracca, M. (2021), "Seismic interaction of adjacent structures on liquefiable soils: Insight from centrifuge and numerical modeling", J. Geotech. Geoenviron., 147(8), 04021063. https://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0002546.
  21. Jafariana, Y., Mehrzadb, B., Lee, C.J. and Haddad, A.H. (2017), "Centrifuge modeling of seismic foundation-soil-foundation interaction on liquefiable sand", Soil Dyn. Earthq. Eng., 97, 184-204. https://doi.org/10.1016/j.soildyn.2017.03.019.
  22. Kassas, K., Adamidis, O. and Anastasopoulos, I. (2022), "Structure-soil-structure interaction (SSSI) of adjacent buildings with shallow foundations on liquefiable soil", Earthq. Eng. Struct. Dyn., 51, 2315-2334. https://doi.org/10.1002/eqe.3665.
  23. Kirkwood, P. and Dashti, S. (2018), "A centrifuge study of seismic structure-soil-structure interaction on liquefiable ground and implications for design in dense urban areas", Earthq. Spectra, 34(3), 1113-1134. https://doi.org/10.1193/052417EQS095M.
  24. Lu, C.W., Chu, M.C., Ge, L. and Peng, K.S. (2020), "Estimation of settlement after soil liquefaction for structures built on shallow foundations", Soil Dyn. Earthq. Eng., 129, 105916. https://doi.org/10.1016/j.soildyn.2019.105916.
  25. Lu, C.W., Gui, M.W. and Lai, S.C. (2014), "A numerical study on soil-group-pile-bridge-pier interaction under the effect of earthquake loading", J. Earthq. Tsunami, 8(1), 1350037. https://doi.org/10.1142/S1793431113500371.
  26. Miari, M. and Jankowski, R. (2022a), "Analysis of floor-to-column pounding of buildings founded on different soil types", Bull. Earthq. Eng., 20(13), 7241-7262. https://doi.org/10.1007/s10518-022-01482-0.
  27. Miari, M. and Jankowski, R. (2022b), "Seismic gap between buildings founded on different soil types experiencing pounding during earthquakes", Earthq. Spectra, 38(3), 2183-2206. https://doi.org/10.1177/87552930221082968.
  28. Miari, M. and Jankowski, R. (2022c), "Shaking table experimental study on pounding between adjacent structures founded on different soil types", Struct., 44, 851-879. https://doi.org/10.1016/j.istruc.2022.08.059.
  29. Miari, M. and Jankowski, R. (2022d), "Analysis of pounding between adjacent buildings founded on different soil types", Soil Dyn. Earthq. Eng., 154, 107156. https://doi.org/10.1016/j.soildyn.2022.107156.
  30. Miari, M. and Jankowski, R. (2022e), "Incremental dynamic analysis and fragility assessment of buildings founded on different soil types experiencing structural pounding during earthquakes", Eng. Struct., 252, 113118. https://doi.org/10.1016/j.engstruct.2021.113118.
  31. Oka, F. (1992), "A cyclic elasto-viscoplastic constitutive model for clay based on the non-linear hardening rule", International Symposium on Numerical Models in Geomechanics, Swansea, UK, August.
  32. Oka, F., Yashima, A., Shibata, T., Kato, M. and Uzuoka, R. (1994), "FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model", Appl. Sci. Res., 52(3), 209-245. https://doi.org/10.1007/BF00853951.
  33. Olarte, J., Paramasivam, B., Dashti, S., Liel, A. and Zannin, J. (2017), "Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground", Soil Dyn. Earthq. Eng., 97, 304-323. https://doi.org/10.1016/j.soildyn.2017.03.014.
  34. Ozcebe, A.G., Giretti, D., Bozzoni, F., Fioravante, V. and Lai, C.G. (2021), "Centrifuge and numerical modelling of earthquake-induced soil liquefaction under free-field conditions and by considering soil-structure interaction", B. Earthq. Eng., 19(1), 47-75. https://doi.org/10.1007/s10518-020-00972-3.
  35. Paramasivam, B., Dashti, S. and Liel, A. (2018), "Influence of prefabricated vertical drains on the seismic performance of structures founded on liquefiable soils", J. Geotech. Geoenviron., 144(10), 04018070. http://dx.chinadoi.cn/10.1061/(ASCE)GT.1943-5606.0001950.
  36. Serikawa, Y., Miyajima, M., Yoshida, M. and Matsuno, K. (2019), "Inclination of houses induced by liquefaction in the 2018 Hokkaido Iburi-Tobu earthquake", Geoenviron. Disast., 6(1), 1-9. https://doi.org/10.1186/s40677-019-0130-z.
  37. Sharifi, B., Nouri, G. and Ghanbari, A. (2020), "Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses", Earthq. Struct., 18(6), 667-675. https://doi.org/10.12989/eas.2020.18.6.667.
  38. Tsai, C.C., Lu, C.C., Hwang, Y.W. and Hsu, S.Y. (2018), "Geotechnical reconnaissance of the 2016 ML6.6 Meinong earthquake in Taiwan", J. Earthq. Eng., 22(9), 1710-1736. https://doi.org/10.1080/13632469.2017.1297271.
  39. Tsukamoto, Y., Ishihara, K., Sawada, S. and Fujiwara, S. (2012), "Settlement of rigid circular foundations during seismic shaking in shaking table tests", Int. J. Geomech., 4(12), 462-470. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000153.
  40. Uzuoka, R., Cubrinovski, M., Sugita, H., Sato, M., Tokimatsu, K., Sento, N., Kazama, M., Zhang, F., Yashima, A. and Oka, F. (2008), "Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: Shaking in the direction perpendicular to ground flow", Soil Dyn. Earthq. Eng., 28(6), 436-452. https://doi.org/10.1016/j.soildyn.2007.08.007.
  41. Wang, J.S., Guo, T. and Du, Z.Y. (2022), "Experimental and numerical study on the influence of dynamic structure-soil-structure interaction on the responses of two adjacent idealized structural systems", J. Build., 52, 104454. https://doi.org/10.1016/j.jobe.2022.104454.