DOI QR코드

DOI QR Code

Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake (Department of Agricultural Education, College of Education, Sunchon National University) ;
  • Malavige Romesha Chandanee (Department of Agricultural Education, College of Education, Sunchon National University) ;
  • Sang-Myeong Lee (Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University) ;
  • Jung Min Heo (College of Agriculture and Life Sciences, Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Young-Joo Yi (Department of Agricultural Education, College of Education, Sunchon National University)
  • Received : 2023.02.15
  • Accepted : 2023.04.07
  • Published : 2023.09.01

Abstract

Objective: Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. Methods: Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. Results: The IAP activity was significantly lower in the ileum samples of the dysbiosis-induced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. Conclusion: The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C1014007 and RS-2023-00245276).

References

  1. Bilski J, Mazur-Bialy A, Wojcik D, et al. The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators Inflamm 2017;2017:9074601. https://doi.org/10.1155/2017/9074601
  2. Singh SB, Carroll-Portillo A, Coffman C, Ritz NL, Lin HC. Intestinal alkaline phosphatase exerts anti-inflammatory effects against lipopolysaccharide by inducing autophagy. Sci Rep 2020;10:3107. https://doi.org/10.1038/s41598-020-59474-6
  3. Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014;20:15650-6. https://doi.org/10.3748/wjg.v20.i42.15650
  4. Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol 2009;587:3651-63. https://doi.org/10.1113/jphysiol.2009.172270
  5. Alam SN, Yammine H, Moaven O, et al. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann Surg 2014;259:715-22. https://doi.org/10.1097/SLA.0b013e31828fae14
  6. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 2012;27:201-14. https://doi.org/10.1177/0884533611436116
  7. Montalto M, D'onofrio F, Gallo A, Cazzato A, Gasbarrini G. Intestinal microbiota and its functions. Dig Liver Dis Suppl 2009;3:30-4. https://doi.org/10.1016/S1594-5804(09)60016-4
  8. Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 2005;93:S41-8. https://doi.org/10.1079/BJN20041356
  9. Melara EG, Avellaneda MC, Valdivie M, Garcia-Hernandez Y, Aroche R, Martinez Y. Probiotics: Symbiotic relationship with the animal host. Animals 2022;12:719. https://doi.org/10.3390/ani12060719
  10. Malo MS, Moaven O, Muhammad N, et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol 2014;306:G826-38. https://doi.org/10.1152/ajpgi.00357.2013
  11. Fan MZ, Archbold T. Novel and disruptive biological strategies for resolving gut health challenges in monogastric food animal production. Anim Nutr 2015;1:138-43. https://doi.org/10.1016/j.aninu.2015.10.002
  12. Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Protective effect of alkaline phosphatase supplementation on infant health. Foods 2022;11:1212. https://doi.org/10.3390/foods11091212
  13. Ge X, Ding C, Zhao W, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med 2017;15:13. https://doi.org/10.1186/s12967-016-1105-4
  14. Chihara M, Otsuka S, Ichii O, Hashimoto Y, Kon Y. Molecular dynamics of the blood-testis barrier components during murine spermatogenesis. Mol Reprod Dev 2010;77:630-9. https://doi.org/10.1002/mrd.21200
  15. Udomsopagit T, Miwa A, Seki M, et al. Intestinal microbiota transplantation reveals the role of microbiota in dietary regulation of RegIIIβ and RegIIIγ expression in mouse intestine. Biochem Biophys Res Commun 2020;529:64-9. https://doi.org/10.1016/j.bbrc.2020.05.150
  16. Liu W, Hu D, Huo H, et al. Intestinal alkaline phosphatase regulates tight junction protein levels. J Am Coll Surg 2016;222:1009-17. https://doi.org/10.1016/j.jamcollsurg.2015.12.006
  17. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007;448:427-34. https://doi.org/10.1038/nature06005
  18. Whitehouse JS, Riggle KM, Purpi DP, et al. The protective role of intestinal alkaline phosphatase in necrotizing enterocolitis. J Surg Res 2010;163:79-85. https://doi.org/10.1016/j.jss.2010.04.048
  19. Kaliannan K, Hamarneh SR, Economopoulos KP, et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA 2013;110:7003-8. https://doi.org/10.1073/pnas.1220180110
  20. Yan Y, Kolachala V, Dalmasso G, et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One 2009;4:e6073. https://doi.org/10.1371/journal.pone.0006073
  21. Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015;7:29. https://doi.org/10.1186/s13099-015-0076-y
  22. Jump RL, Levine AD. Mechanisms of natural tolerance in the intestine: implications for inflammatory bowel disease. Inflamm Bowel Dis 2004;10:462-78. https://doi.org/10.1097/00054725-200407000-00023
  23. Niimi K, Morimoto M. Cytokine elevation in the mouse small intestine at the early stage of infection with the gastrointestinal parasite Heligmosomoides polygyrus. J Vet Med Sci 2021;83:573-80. https://doi.org/10.1292/jvms.20-0498
  24. Kmiec ZB. Cytokines in inflammatory bowel disease. Arch Immunol Ther Exp1998;46:143-55.
  25. Zhang Q, Cheng L, Wang J, Hao M, Che H. Antibiotic-induced gut microbiota dysbiosis damages the intestinal barrier, increasing food allergy in adult mice. Nutrients 2021;13:3315. https://doi.org/10.3390/nu13103315
  26. Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 2008;135:173-84. https://doi.org/10.1053/j.gastro.2008.04.002
  27. Rentea RM, Liedel JL, Welak SR, et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg 2012;47:1135-42. https://doi.org/10.1016/j.jpedsurg.2012.03.018
  28. Kim TI. The role of barrier dysfunction and change of claudin expression in inflammatory bowel disease. Gut Liver 2015;9:699-700. https://doi.org/10.5009%2Fgnl15430 https://doi.org/10.5009%2Fgnl15430
  29. Kaczorowski DJ, Nakao A, Vallabhaneni R, et al. Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation 2009;87:1455-63. https://doi.org/10.1097/TP.0b013e3181a36e5e
  30. Xu J, Lu C, Liu Z, Zhang P, Guo H, Wang T. Schizandrin B protects LPS-induced sepsis via TLR4/NF-κB/MyD88 signaling pathway. Am J Transl Res 2018;10:1155-63.
  31. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-81. https://doi.org/10.2337/db07-1403
  32. Alhasson F, Das S, Seth R, et al. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PloS one 2017;12:e0172914. https://doi.org/10.1371/journal.pone.0172914
  33. Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 2016;124:11-20. https://doi.org/10.1016/j.biochi.2015.06.020
  34. Escobedo G, Lopez-Ortiz E, Torres-Castro I. Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance. Rev Invest Clin 2014;66:450-9.
  35. Saijo F, Milsom AB, Bryan NS, et al. On the dynamics of nitrite, nitrate and other biomarkers of nitric oxide production in inflammatory bowel disease. Nitric Oxide 2010;22:155-67. https://doi.org/10.1016/j.niox.2009.11.009
  36. Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 2004;113:427-37. https://doi.org/10.1111/j.1365-2567.2004.01984.x
  37. Bluemel S, Wang L, Martino C, et al. The role of intestinal C-type regenerating islet derived-3 lectins for nonalcoholic steatohepatitis. Hepatol Commun 2018;2:393-406. https://doi.org/10.1002/hep4.1165
  38. Erben U, Loddenkemper C, Doerfel K, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol 2014;7:4557-76.