DOI QR코드

DOI QR Code

Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy

  • Maria Sumampa Coria (Instituto de Bionanotecnologia del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero) ;
  • Maria Sofia Castano Ledesma (Instituto de Bionanotecnologia del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero) ;
  • Jorge Raul Gomez Rojas (Instituto de Bionanotecnologia del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero) ;
  • Gabriela Grigioni (Universidad de Moron. Facultad de Agronomia y Ciencias Agroalimentarias) ;
  • Gustavo Adolfo Palma (Instituto de Bionanotecnologia del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero) ;
  • Claudio Dario Borsarelli (Instituto de Bionanotecnologia del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero)
  • Received : 2022.11.29
  • Accepted : 2023.01.30
  • Published : 2023.09.01

Abstract

Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm-1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes.

Keywords

Acknowledgement

The authors would like to acknowledge Mrs. Karina Moreno and PhD. Eduardo A. Parellada for the technical assistance in determining the physical parameters of beef.

References

  1. Hunt MR, Garmyn AJ, O'Quinn TG, et al. Consumer assessment of beef palatability from four beef muscles from USDA Choice and Select graded carcasses. Meat Sci 2014;98:1-8. https://doi.org/10.1016/j.meatsci.2014.04.004
  2. Miller MF, Carr M a, Ramsey CB, Crockett KL, Hoover LC. Consumer thresholds for establishing the value of beef tenderness. J Anim Sci 2001;79:3062-8. https://doi.org/10.2527/2001.79123062x
  3. Beattie RJ, Bell SJ, Farmer LJ, Moss BW, Patterson D. Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Sci 2004;66:903-13. https://doi.org/10.1016/j.meatsci.2003.08.012
  4. Ruiz De Huidobro F, Miguel E, Blazquez B, Onega E. A comparison between two methods (Warner-Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Sci 2005;69:527-36. https://doi.org/10.1016/j.meatsci.2004.09.008
  5. Jeremiah LE, Dugan MER, Aalhus JL, Gibson LL. Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Sci 2003;65:1013-9. https://doi.org/10.1016/S0309-1740(02)00309-1
  6. Aalhus JL, Jeremiah LE, Dugan MER, Larsen IL, Gibson LL. Establishment of consumer thresholds for beef quality attributes. Can J Anim Sci 2004;84:631-8. https://doi.org/10.4141/A03-106
  7. Ozbekova Z, Kulmyrzaev A. Fluorescence spectroscopy for accurate and rapid prediction of meat composition. Indian J Anim Sci 2019;89:786-90. https://doi.org/10.56093/ijans.v89i7.92052
  8. Pu Y, Wang W, Alfano RR. Optical detection of meat spoilage using fluorescence spectroscopy with selective excitation wavelength. Appl Spectrosc 2013;67:210-3. https://doi.org/10.1366/12-06653
  9. Damez JL, Clerjon S. Meat quality assessment using biophysical methods related to meat structure. Meat Sci 2008;80:132-49. https://doi.org/10.1016/j.meatsci.2008.05.039
  10. De Biasio M, Stampfer P, Leitner R, Huck CW, Wiedemair V, Balthasar D. Micro-raman spectroscopy for meat type detection. In: Proceedings the Next-Generation Spectroscopic Technologies VIII. SPIE 2015;9482:377-82. https://doi.org/10.1117/12.2176321
  11. Herrero AM. Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem 2008;107:1642-51. https://doi.org/10.1016/j.foodchem.2007.10.014
  12. Wang Q, Lonergan SM, Yu C. Rapid determination of pork sensory quality using Raman spectroscopy. Meat Sci 2012;91:232-9. https://doi.org/10.1016/j.meatsci.2012.01.017
  13. Santos CC, Zhao J, Dong X, et al. Predicting aged pork quality using a portable Raman device. Meat Sci 2018;145:79-85. https://doi.org/10.1016/j.meatsci.2018.05.021
  14. Fowler SM, Schmidt H, van de Ven R, Wynn P, Hopkins DL. Raman spectroscopy compared against traditional predictors of shear force in lamb m. longissimus lumborum. Meat Sci 2014;98:652-6. https://doi.org/10.1016/j.meatsci.2014.06.042
  15. Fowler SM, Ponnampalam EN, Schmidt H, Wynn P, Hopkins DL. Prediction of intramuscular fat content and major fatty acid groups of lamb M. longissimus lumborum using Raman spectroscopy. Meat Sci 2015;110:70-5. https://doi.org/10.1016/j.meatsci.2015.06.016
  16. Fowler SM, Schmidt H, van de Ven R, Hopkins DL. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Meat Sci 2018;138:53-8. https://doi.org/10.1016/j.meatsci.2018.01.002
  17. Bauer A, Scheier R, Eberle T, Schmidt H. Assessment of tenderness of aged bovine gluteus medius muscles using Raman spectroscopy. Meat Sci 2016;115:27-33. https://doi.org/10.1016/j.meatsci.2015.12.020
  18. Cama-Moncunill R, Cafferky J, Augier C, et al. Prediction of Warner-Bratzler shear force, intramuscular fat, drip-loss and cook-loss in beef via Raman spectroscopy and chemometrics. Meat Sci 2020;167:108157. https://doi.org/10.1016/j.meatsci.2020.108157
  19. Chen Q, Zhang Y, Guo Y, et al. Non-destructive prediction of texture of frozen/thaw raw beef by Raman spectroscopy. J Food Eng 2020;266:109693. https://doi.org/10.1016/j.jfoodeng.2019.109693
  20. Fowler SM, Schmidt H, van de Ven R, Wynn P, Hopkins DL. Predicting meat quality traits of ovine m. semimembranosus, both fresh and following freezing and thawing, using a hand held Raman spectroscopic device. Meat Sci 2015;108:138-44. https://doi.org/10.1016/j.meatsci.2015.06.010
  21. AOAC. Official methods of analysis. Association of Official Analytical Chemists 15th ed. Arlington, VA, USA; 1992.
  22. Zamorano JM, Gambaruto M. Contribution to improving the meat water holding capacity test by the filter paper press method. A comparison of three methods for measuring areas. Meat Sci 1997;46:129-37. https://doi.org/10.1016/s0309-1740(97)00011-9
  23. AMSA. Research guidelines for cookery, sensory evaluation and instrumental tenderness measurements of fresh meat. Chicago, IL, USA: American Meat Science Asociation; 2015.
  24. Ruiz de Huidobro F, Miguel E, Onega E, Blazquez B. Changes in meat quality characteristics of bovine meat during the first 6 days post mortem. Meat Sci 2003;65:1439-46. https://doi.org/10.1016/S0309-1740(03)00068-8
  25. Szczesniak AS. Objective measurements of food texture. J Food Sci 1963;28:410-20. https://doi.org/10.1111/j.1365-2621.1963.tb00219.x
  26. Coria MS, Reineri PS, Pighin D, et al. Feeding strategies alter gene expression of the calpain system and meat quality in the longissimus muscle of Braford steers. Asian-Australas J Anim Sci 2020;33:753-62. https://doi.org/10.5713/ajas.19.0163
  27. Shackelford SD, Wheeler TL, Koohmaraie M. Tenderness classification of beef: I. Evaluation of beef longissimus shear force at 1 or 2 days postmortem as a predictor of aged beef tenderness. J Anim Sci 1997;75:2417-22. https://doi.org/10.2527/1997.7592417x
  28. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat version 2012 [internet]. Grupo InfoStat, FCA, Universidad Nacional de Cordoba, Argentina; 2016. Available from: http://www.infostat.com.ar
  29. Candeloro P, Grande E, Raimondo R, et al. Raman database of amino acids solutions: a critical study of extended multiplicative signal correction. Analyst 2013;138:7331-40. https://doi.org/10.1039/c3an01665j
  30. Ertbjerg P, Puolanne E. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci 2017;132:139-52. https://doi.org/10.1016/j.meatsci.2017.04.261
  31. Hopkins DL, Toohey ES, Lamb TA, Kerr MJ, Van De Ven R, Refshauge G. Explaining the variation in the shear force of lamb meat using sarcomere length, the rate of rigor onset and pH. Meat Sci 2011;88:794-6. https://doi.org/10.1016/j.meatsci.2011.03.004
  32. Pouliot E, Gariepy C, Theriault M, Castonguay FW. Use of electrical stimulation and chilling to enhance meat tenderness of heavy lambs. Can J Anim Sci 2014;94:627-37. https://doi.org/10.4141/cjas-2014-076
  33. Hughes JM, Oiseth SK, Purslow PP, Warner RD. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci 2014;98:520-32. https://doi.org/10.1016/j.meatsci.2014.05.022
  34. Realini CE, Duckett SK, Brito GW, Dalla Rizza M, De Mattos D. Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Sci 2004;66:567-77. https://doi.org/10.1016/S0309-1740(03)00160-8
  35. Brito G, Lagomarsino X, Olivera J, et al. Effect of different feeding systems (pasture and supplementation) on carcass and meat quality of Hereford and Braford steers in Uruguay. In: Proc 54th ICOMST; 2008. pp. 1-3.
  36. Ueda Y, Watanabe A, Higuchi M, Shingu H, Kushibiki S, Shinoda M. Effects of intramuscular fat deposition on the beef traits of Japanese Black steers (Wagyu): Original article. Anim Sci J 2007;78:189-94. https://doi.org/10.1111/j.1740-0929.2007.00424.x
  37. Beattie RJ, Bell SEJ, Borggaard C, Moss BW. Preliminary investigations on the effects of ageing and cooking on the Raman spectra of porcine longissimus dorsi. Meat Sci 2008;80:1205-11. https://doi.org/10.1016/j.meatsci.2008.05.016
  38. Smith GC, Tatum JD, Belk KE. International perspective: Characterisation of United States Department of Agriculture and Meat Standards Australia systems for assessing beef quality. Aust J Exp Agric 2008;48:1465-80. https://doi.org/10.1071/EA08198
  39. Velioglu HM, Temiz HT, Boyaci IH. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis. Food Chem 2015;172:283-90. https://doi.org/10.1016/j.foodchem.2014.09.073
  40. Schmidt H, Scheier R, Hopkins DL. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss. Meat Sci 2013;93:138-43. https://doi.org/10.1016/j.meatsci.2012.08.019
  41. Nian Y, Zhao M, O'Donnell CP, Downey G, Kerry JP, Allen P. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Food Res Int 2017;99:778-89. https://doi.org/10.1016/j.foodres.2017.06.056