DOI QR코드

DOI QR Code

Effect of UV-B irradiated vitamin D enriched yeast supplementation on milk performance and blood chemical profiles in dairy cows

  • Patipan Hnokaew (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University) ;
  • Tossapol Moonmanee (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University) ;
  • Chirawath Phatsara (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University) ;
  • Nattaphon Chongkasikit (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University) ;
  • Prayad Trirawong (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University) ;
  • Lukman Abiola Oluodo (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University) ;
  • Saowaluck Yammuen-Art (Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University)
  • 투고 : 2023.01.13
  • 심사 : 2023.05.01
  • 발행 : 2023.10.01

초록

Objective: The objective was to evaluate the effects of UV-B irradiated vitamin D-enriched yeast supplementation on milk yield, milk composition, vitamin D in milk, milk fatty acids, blood chemistry, and 25(OH)D status in dairy cows. Methods: Six Thai Friesian cows (milk production, 11.2±2.0 kg/d; body weight, 415.0±20.0 kg; and days in milk, 90.0±6.0) were allocated to each treatment in a 3×3 Latin square design, with three treatments and three periods. Each period of the Latin square lasted 49 days consisting of 14 days for diet adaptation and 35 days for sample collection. Dairy cows were randomly assigned to one of three treatments: i) feeding a basal diet without yeast (CON); ii) basal diet + 5 g of live yeast (75 IU/head/d of vitamin D2; LY); and iii) basal diet + 5 g of UV-B irradiated vitamin D enriched yeast (150,000 IU/head/d of vitamin D2; VDY). Feed intake and milk production were recorded daily, milk sample collection occurred on days 14 and 35 of each collection period, and blood plasma was collected on days 0, 7, 14, 21, 28, and 35 of each collection period. Results: The results show that after a trial period of 14 and 35 days, the VDY group had significantly higher vitamin D content in milk than the LY and CON groups (376.41 vs 305.15, 302.14 ng/L and 413.46 vs 306.76, 301.12 ng/L, respectively). At days 7, 14, 21, 28, and 35 of the experiment, cows fed the VDY group had significantly higher 25(OH)D2 status in blood than the CON and LY groups (51.07 vs 47.16, 48.05 ng/mL; 54.96 vs 45.43, 46.91 ng/mL; 56.16 vs 46.87, 47.16 ng/mL; 60.67 vs 44.39, 46.17 ng/mL and 63.91 vs 45.88, 46.88 ng/mL), respectively. Conclusion: In conclusion, UV-B irradiated vitamin D-enriched yeast supplementation could improve vitamin D content in the milk and 25(OH)D status in dairy cows during the lactation period.

키워드

과제정보

The research team would like to thank Research and Researcher for Industries (RRI) and Chiang Mai Fresh Milk Co., Ltd. for generously funding this study (PHD61I0014). In addition, we would like to thank the Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, for providing technical support and laboratory facilities during this study. This research work was partially supported by Chiang Mai University.

참고문헌

  1. Deluca HF. Vitamin D: a new look at an old vitamin. Nutr Rev 1971;29:179-81. https://doi.org/10.1111/j.1753-4887.1971.tb07292.x 
  2. Lund J, DeLuca HF. Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. J Lipid Res 1966;7:739-44. https://doi.org/10.1016/s0022-2275(20)38950-1 
  3. Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 1970;228:764-6. https://doi.org/10.1038/228764a0 
  4. Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab 2010;95:471-8. https://doi.org/10.1210/jc.2009-1773 
  5. Nelson CD, Reinhardt TA, Lippolis JD, Sacco RE, Nonnecke BJ. Vitamin D signaling in the bovine immune system: A model for understanding human vitamin D requirements. Nutrients 2012;4:181-96. https://doi.org/10.3390/nu4030181 
  6. Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 2008;88:491S-9S. https://doi.org/10.1093/ajcn/88.2.491S 
  7. Japelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci 2013;4:136. https://doi.org/10.3389/fpls.2013.00136 
  8. Makris K, Sempos C, Cavalier E. The measurement of vitamin D metabolites: part I-metabolism of vitamin D and the measurement of 25-hydroxyvitamin D. Hormones (Athens) 2020;19:81-96. https://doi.org/10.1007/s42000-019-00169-7 
  9. Zafalon RVA, Ruberti B, Rentas MF, et al. The role of vitamin D in small animal bone metabolism. Metabolites 2020;10:496. https://doi.org/10.3390/metabo10120496 
  10. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014;21:319-29. https://doi.org/10.1016/j.chembiol.2013.12.016 
  11. Eder K, Grundmann SM. Vitamin D in dairy cows: metabolism, status and functions in the immune system. Arch Anim Nutr 2022;76:1-33. https://doi.org/10.1080/1745039X.2021.2017747 
  12. Mandrioli M, Boselli E, Fiori F, Rodriguez-Estrada MT. Vitamin D3 in high-quality cow milk: An italian case study. Foods 2020;9:548. https://doi.org/10.3390/foods9050548 
  13. Sommerfeldt JL, Horst RL, Littledike TE, Beitz DC. In vitro degradation of cholecalciferol in rumen fluid. J Dairy Sci 1979;62(Suppl 1):192-3. 
  14. Sommerfeldt JL, Napoli JL, Littledike ET, Beitz DC, R.L. H. Metabolism of orally administered [3H]ergocalciferol and [3H]cholecalciferol by dairy calves. J Nutr 1983;113:2595-600. https://doi.org/10.1093/jn/113.12.2595 
  15. Horst RL, Reinhardt TA. Vitamin D metabolism in ruminants and its relevance to the periparturient cow. J Dairy Sci 1983;66:661-78. https://doi.org/10.3168/jds.S0022-0302(83)81844-X 
  16. Hnokaew P, Yammuen-Art S. Vitamin D2 production and in vitro ruminal degradation of UV-B irradiated vitamin D enriched yeast in Thai native cattle. Vet Integr Sci 2021;19:537-56. https://doi.org/10.12982/VIS.2021.042 
  17. McDermott CM, Beitz DC, Littledike ET, Horst RL. Effects of dietary vitamin D3 on concentrations of vitamin D and its metabolites in blood plasma and milk of dairy cows. J Dairy Sci 1985;68:1959-67. https://doi.org/10.3168/jds.S0022-0302(85)81057-2 
  18. Braun M, Fub W, Kompa KL, Wolfrum J. Improved photosynthesis of previtamin D by wavelengths of 280-300 nm. J Photochem Photobiol A Chem 1991;61:15-26. https://doi.org/10.1016/1010-6030(91)85070-W 
  19. Foss YJ. Vitamin D deficiency is the cause of common obesity. Med Hypotheses 2009;72:314-21. https://doi.org/10.1016/j.mehy.2008.10.005 
  20. Jakobsen J, Jensen SK, Hymoller L, et al. Short communication: Artificial ultraviolet B light exposure increases vitamin D levels in cow plasma and milk. J Dairy Sci 2015;98:6492-8. https://doi.org/10.3168/jds.2014-9277 
  21. Dias ALG, Freitas JA, Micai B, et al. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J Dairy Sci 2018;101:201-21. https://doi.org/10.3168/jds.2017-13241 
  22. Walker GM. Yeast physiology and biotechnology. London, UK: John Wiley and Sons Ltd; 1998. 
  23. Jouany JP. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Anim Reprod Sci 2006;96:250-64. https://doi.org/10.1016/j.anireprosci.2006.08.005 
  24. Association of Official Analytical Collaboration International. Official methods of analysis. 17th ed. Arlington, VA, USA: Official Analytical Chemists; 2000. 
  25. Mattila PH, Piironen VI, Uusi-Rauva EJ, Koivistoinen PE. Vitamin D contents in edible mushrooms. J Agric Food Chem 1994;42:2449-53. https://doi.org/10.1021/jf00047a016 
  26. National Reasearch Council. Nutrient requirements of dairy cattle. 7th ed. Washington, DC, USA: National Academies Press; 2001. 
  27. Folch J, Lees M, Sloane SH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497-509.  https://doi.org/10.1016/S0021-9258(18)64849-5
  28. Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 1964;5:600-8. https://doi.org/10.1016/s0022-2275(20)40190-7 
  29. Sringarm K, Chaiwang N, Wattanakul W, et al. Improvement of intramuscular fat in longissimus muscle of finishing thai crossbred black pigs by perilla cake supplementation in a low-lysine diet. Foods 2022;11:907. https://doi.org/10.3390/foods11070907 
  30. Zappaterra M, Luise D, Zambonelli P, et al. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Sci 2019;156:75-84. https://doi.org/10.1016/j.meatsci.2019.05.013 
  31. Gong BY, Ho JW. Simultaneous separation and detection of ten common fat-soluble vitamins in milk. J Liq Chromatogr Relat Technol 1997;20:2389-97. https://doi.org/10.1080/10826079708002710 
  32. Olkowski AA, Aranda-Osorio G, McKinnon J. Rapid HPLC method for measurement of vitamin D3 and 25(OH)D3 in blood plasma. Int J Vitam Nutr Res 2003;73:15-8. https://doi.org/10.1024/0300-9831.73.1.15 
  33. Mathieu F, Jouany JP, Senaud J, et al. TThe effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod Nutr Dev 1996;36:271-87. https://doi.org/10.1051/rnd:19960305 
  34. Julien C, Marden JP, Enjalbert F, Bayourthe C, Troegeler. Live yeast as a possible modulator of polyunsaturated fatty acid biohydrogenation in the rumen. Rev Med Vet 2010;8-9:391-400.
  35. Asanuma N, Hino T. Prevention of rumen acidosis and suppression of ruminal methanogenesis by augmentation of lactate utilization. Anim Sci J (japan) 2004;75:543-50.  https://doi.org/10.2508/chikusan.75.543
  36. Counotte GHM, Prins RA, Janssen RHAM, Debie MJA. Role of megasphaera elsdenii in the fermentation of dl-[2-C] lactate in the rumen of dairy cattle. Appl Environ Microbiol 1981;42:649-55. https://doi.org/10.1128/aem.42.4.649-655.1981 
  37. Monteiro HF, Agustinho BC, Vinyard JR, et al. Megasphaera elsdenii and saccharomyces cerevisiae as direct fed microbials during an in vitro acute ruminal acidosis challenge. Sci Rep 2022;12:7978. https://doi.org/10.1038/s41598-022-11959-2 
  38. Nisbet DJ, Martin SA. Effects of fumarate,L-malate, and an Aspergillus oryzae fermentation extract onD-lactate utilization by the ruminal bacterium selenomonas ruminantium. Curr Microbiol 1993;26:133-6. https://doi.org/10.1007/BF01577366 
  39. Chaucheyras-Durand F, Fonty G. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive saccharomyces cerevisiae CNCM I-1077. Reprod Nutr Dev 2001;41:57-68. https://doi.org/10.1051/rnd:2001112 
  40. Newbold CJ, Wallace RJ, McKain N. Effects of the ionophore tetronasin on nitrogen metabolism by ruminal microorganisms in vitro. J Anim Sci 1990;68:1103-9. https://doi.org/10.2527/1990.6841103x 
  41. Lila ZA, Mohammed N, Tatsuoka N, Y Kurokawa Y, Kanda, SH. Effect of cyclodextrin diallyl maleate on methane production, ruminal fermentation and microbes in vitro and in vivo. J Anim Sci 2004;75:15-22. https://doi.org/10.1111/j.1740-0929.2004.00149.x 
  42. Hollis BW, Roos BA, Draper HH, Lambert PW. Vitamin D and its metabolites in human and bovine milk. J Nutr 1981;111:1240-8. https://doi.org/10.1093/jn/111.7.1240 
  43. Bayat AR, Kairenius P, Stefanski T, et al. Effect of camelina oil or live yeasts (saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J Dairy Sci 2015;98:3166-81. https://doi.org/10.3168/jds.2014-7976 
  44. Longuski RA, Ying Y, Allen MS. Yeast culture supplementation prevented milk fat depression by a short-term dietary challenge with fermentable starch. J Dairy Sci 2009;92:160-7. https://doi.org/10.3168/jds.2008-0990 
  45. Yalcin S, Yalcin S, Can P, et al. The nutritive value of live yeast culture (saccharomyces cerevisiae) and its effect on milk yield, milk composition and some blood parameters of dairy cows. Asian-Australas J Anim Sci 2011;24:1377-85. https://doi.org/10.5713/ajas.2011.11060 
  46. Mavrommatis A, Mitsiopoulou C, Christodoulou C, et al. Dietary supplementation of a live yeast product on dairy sheep milk performance, oxidative and immune status in peripartum period. J Fungi (Basel) 2020;6:334. https://doi.org/10.3390/jof6040334 
  47. Troegeler-Meynadier A, Bret-Bennis L, Enjalbert F. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Reprod Nutr Dev 2006;46:713-24. https://doi.org/10.1051/rnd:2006046 
  48. Duchow EG, Cooke NE, Seeman J, Plum LA, DeLuca HF. Vitamin D binding protein is required to utilize skin-generated vitamin D. Proc Natl Acad Sci USA 2019;116:24527-32. https://doi.org/10.1073/pnas.1915442116 
  49. Herrmann M, Farrell CJL, Pusceddur i, Cabello NF, Cavalier E. Assessment of vitamin D status - a changing landscape. Clin Chem Lab Med 2017;55:3-26. https://doi.org/10.1515/cclm-2016-0264 
  50. Bikle DD, Gee E, Halloran B, et al. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 1986;63:954-9. https://doi.org/10.1210/jcem-63-4-954 
  51. Bikle DD, Siiteri PK, Ryzen E, Haddad JG. Serum protein binding of 1,25-dihydroxyvitamin D: A reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 1985;61:969-75. https://doi.org/10.1210/jcem-61-5-969 
  52. Nykjaer A, Dragun D, Walther D, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999;96:507-15. https://doi.org/10.1016/s0092-8674(00)80655-8 
  53. Chun RF, Shieh A, Gottlieb C, et al. Vitamin D binding protein and the biological activity of vitamin D. Front Endocrinol (Lausanne) 2019;10:718. https://doi.org/10.3389/fendo.2019.00718 
  54. Yousefzadeh P, Shapses SA, Wang X. Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions. Int J Endocrinol 2014;2014:981581. https://doi.org/10.1155/2014/981581 
  55. Chun RF, Peercy BE, Orwoll ES, et al. Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 2014;144 Pt A:132-7. https://doi.org/10.1016/j.jsbmb.2013.09.012 
  56. Bagheri M, Ghorbani GR, Rahmani HR, et al. Effect of live yeast and mannan-oligosaccharides on performance of early-lactation holstein dairy cows. Asian-Australas J Anim Sci 2009;22:812-8. https://doi.org/10.5713/ajas.2009.80561 
  57. Piva G, Belladonna S, Fusconi G, Sicbaldi F. Effects of yeast on dairy cow performance, ruminal fermentation, blood components, and milk manufacturing properties. J Dairy Sci 1993;76:2717-22. https://doi.org/10.3168/jds.S0022-0302(93)77608-0