DOI QR코드

DOI QR Code

Electrochemical Ion Separation Technology for Carbon Neutrality

탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술

  • Hwajoo Joo (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University) ;
  • Jaewuk Ahn (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University) ;
  • Sung-il Jeon (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University) ;
  • Jeyong Yoon (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University)
  • 주화주 (서울대학교 화학생물공학부 화학공정신기술연구소) ;
  • 안재욱 (서울대학교 화학생물공학부 화학공정신기술연구소) ;
  • 전성일 (서울대학교 화학생물공학부 화학공정신기술연구소) ;
  • 윤제용 (서울대학교 화학생물공학부 화학공정신기술연구소)
  • Received : 2023.03.20
  • Accepted : 2023.05.10
  • Published : 2023.08.10

Abstract

Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

탄소중립 달성을 위해 에너지 효율적이고 전기화된 사회에 직접 이용될 수 있는 친환경 공정이 주목받고 있다. 다량의 에너지를 소모하는 기존의 열 및 압력 기반의 담수화 기술에서도 이는 예외가 아니기에, 최근 차세대 전기화학 기반 담수화 기술들의 성장이 두드러진다. 대표적으로 에너지 저장 장치의 구동 원리를 기반으로 하는 전기화학적 이온 분리(electrochemical ion separation, EIONS) 기술이 있으며, 여기에는 축전식 탈염(CDI) 기술과 배터리 담수화 시스템(BD)가 포함된다. EIONS 기술에는 시스템 성능 향상을 위해 CDI와 BD를 기본으로 한 다양한 응용 시스템들이 개발되어 왔는데, 이러한 결과물들의 의미와 독창성을 배경지식 없이 한눈에 파악하기 매우 어렵다. 따라서 우리는 이 리뷰 논문에서 EIONS 연구에서의 지난 몇 년간의 기술적 진보와 시스템 개별 특성을 각 시스템의 구동원리, 연구 배경, 장단점을 중심으로 명확하고 구체적으로 설명하고자 한다. 아울러, EIONS의 미래 발전과 연구 방향을 설명하며 리뷰 논문을 마무리하겠다. 이 논문을 통해 EIONS 연구를 막 시작하는 연구자들이 EIONS의 연구 동향을 보다 쉽게 파악할 수 있을 것이다.

Keywords

Acknowledgement

This study was supported by the Technology Innovation Program (10082572, Development of Low Energy Desalination Water Treatment Engineering Package System for Industrial Recycle Water Production) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2018R1A5A1024127).

References

  1. WMO, P. Taalas, 2021 State of climate serivces: Water, 2021.
  2. A. D. Khawaji, I. K. Kutubkhanah, and J. M. Wie, Advances in seawater desalination technologies, Desalination, 221, 47-69 (2008). https://doi.org/10.1016/j.desal.2007.01.067
  3. K. Elsaid, M. Kamil, E. T. Sayed, M. A. Abdelkareem, T. Wilberforce, and A. Olabi, Environmental impact of desalination technologies: A review, Sci. Total Environ., 748, 141528 (2020).
  4. Future Strategy Division, Ministry of Economy and Finance, "2050 Carbon Neutrality" Promotion Strategy, Korea Policy Briefing (2020).
  5. S. Fankhauser, S. M. Smith, M. Allen, K. Axelsson, T. Hale, C. Hepburn, J. M. Kendall, R. Khosla, J. Lezaun, E. Mitchell-Larson, M. Obersteiner, L. Rajamani, R. Rickaby, N. Seddon, and T. Wetzer, The meaning of net zero and how to get it right, Nat. Clim. Chang., 12, 15-21 (2022). https://doi.org/10.1038/s41558-021-01245-w
  6. H. Joo and J. Yoon, Basic concept of carbon neutral engineering in the chemical industry to overcome the climate crisis, Korean Ind. Chem. News, 25, 34-39 (2022).
  7. M. A. Alkhadra, X. Su, M. E. Suss, H. Tian, E. N. Guyes, A. N. Shocron, K. M. Conforti, J. P. de Souza, N. Kim, M. Tedesco, K. Khoiruddin, I. G. Wenten, J. G. Santiago, T. A. Hatton, and M. Z. Bazant, Electrochemical methods for water purification, ion separations, and energy conversion, Chem. Rev., 122, 13547-13635 (2022). https://doi.org/10.1021/acs.chemrev.1c00396
  8. H. Yoon, J. Lee, S. Kim, and J. Yoon, Review of concepts and applications of electrochemical ion separation (EIONS) process, Sep. Purif. Technol., 215, 190-207 (2019). https://doi.org/10.1016/j.seppur.2018.12.071
  9. J. W. Blair and G. W. Murphy, Electrochemical demineralization of water with porous electrodes of large surface area, In: Saline Water Conversion, 206-223, American Chemical Society, Washington, D.C., United States of America (1960).
  10. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - Past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  11. K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, L. C. P. M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115-134 (2019). https://doi.org/10.1016/j.desal.2018.12.015
  12. K. C. Smith, R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-Intercalation: PorousElectrode Modeling, J. Electrochem. Soc., 163, A530-A539 (2016). https://doi.org/10.1149/2.0761603jes
  13. J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. de Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci., 14, 1095-1120 (2021). https://doi.org/10.1039/D0EE03145C
  14. J. H. Yeo and J. H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination, 320, 10-16 (2013). https://doi.org/10.1016/j.desal.2013.04.013
  15. T. Pang and J. Shen, Visualizing the landscape and evolution of capacitive deionization by scientometric analysis, Desalination, 527, 115562 (2022).
  16. S. A. Hawks, A. Ramachandran, S. Porada, P. G. Campbell, M. E. Suss, P. M. Biesheuvel, J. G. Santiago, and M. Stadermann, Performance metrics for the objective assessment of capacitive deionization systems, Water Res., 152, 126-137 (2019). https://doi.org/10.1016/j.watres.2018.10.074
  17. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  18. J. G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M. E. Suss, P. Liang, P. M. Biesheuvel, R. L. Zornitta, and L. C. P. M. De Smet, Recent advances in ion selectivity with capacitive deionization, Energy Environ. Sci., 14, 1095-1120 (2021). https://doi.org/10.1039/D0EE03145C
  19. M. Pasta, C. D. Wessells, Y. Cui, and F. la Mantia, A desalination battery, Nano Lett., 12, 839-843 (2012). https://doi.org/10.1021/nl203889e
  20. P. Srimuk, X. Su, J. Yoon, D. Aurbach, and V. Presser, Chargetransfer materials for electrochemical water desalination, ion separation and the recovery of elements, Nat. Rev. Mater., 5, 517-538 (2020). https://doi.org/10.1038/s41578-020-0193-1
  21. H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem. Rev., 114, 11788-11827 (2014). https://doi.org/10.1021/cr500232y
  22. T. Kim and J. Yoon, CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization, RSC Adv., 5, 1456-1461 (2015). https://doi.org/10.1039/C4RA11257A
  23. N. Kim, J. Lee, S. Kim, S. P. Hong, C. Lee, J. Yoon, and C. Kim, Short review of multichannel membrane capacitive deionization: Principle, current status, and future prospect, Appl. Sci. (Switzerland), 10, 683 (2020).
  24. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  25. J. H. Choi, Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process, Sep. Purif. Technol., 70, 362-366 (2010). https://doi.org/10.1016/j.seppur.2009.10.023
  26. Z. H. Huang, M. Wang, L. Wang, and F. Kang, Relation between the charge efficiency of activated carbon fiber and its desalination performance, Langmuir, 28, 5079-5084 (2012). https://doi.org/10.1021/la204690s
  27. M. W. Ryoo, J. H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci., 264, 414-419 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  28. Z. Peng, D. Zhang, L. Shi, T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22, 6603-6612 (2012). https://doi.org/10.1039/c2jm16735b
  29. Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K. S. Moon, C. P. Wong, 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy., 11, 711-718 (2015). https://doi.org/10.1016/j.nanoen.2014.11.018
  30. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388- 1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  31. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  32. R. Zhao, S. Porada, and P. M. Biesheuvel, A. Van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 330, 35-41 (2013). https://doi.org/10.1016/j.desal.2013.08.017
  33. Y. J. Kim and J. H. Choi, (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71, 70-75. https://doi.org/10.1016/j.seppur.2009.10.026
  34. Lee, J. H., & Choi, J. H. (2012). The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 409, 251-256.
  35. Kim, Y. J., Kim, J. H., & Choi, J. H. (2013). Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI), J. Membr. Sci., 429, 52-57. https://doi.org/10.1016/j.memsci.2012.11.064
  36. M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it?, Energy Environ. Sci., 8, 2296-2319 (2015). https://doi.org/10.1039/C5EE00519A
  37. J. Yu, K. Jo, T. Kim, J. Lee, and J. Yoon, Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization, Desalination, 439, 188-195 (2018). https://doi.org/10.1016/j.desal.2018.04.011
  38. J. Lee, S. Kim, C. Kim, and J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques, Energy Environ. Sci., 7, 3683-3689 (2014). https://doi.org/10.1039/C4EE02378A
  39. J. Lee, K. Jo, J. Lee, S. P. Hong, S. Kim, and J. Yoon, Rocking-chair capacitive deionization for continuous brackish water desalination, ACS Sustain. Chem. Eng., 6, 10815-10822 (2018). https://doi.org/10.1021/acssuschemeng.8b02123
  40. S. il Jeon, H. R. Park, J. G. Yeo, S. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6, 1471-1475 (2013). https://doi.org/10.1039/c3ee24443a
  41. C. Kim, P. Srimuk, J. Lee, M. Aslan, and V. Presser, Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes, Desalination, 425, 104-110 (2018). https://doi.org/10.1016/j.desal.2017.10.012
  42. P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343, 1210-1211 (2014). https://doi.org/10.1126/science.1249625
  43. K. Singh, S. Porada, H. D. de Gier, P. M. Biesheuvel, and L. C. P. M. de Smet, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115-134 (2019). https://doi.org/10.1016/j.desal.2018.12.015
  44. M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 12, 839-843 (2012). https://doi.org/10.1021/nl203889e
  45. H. Kim, J. Hong, K. Y. Park, H. Kim, S. W. Kim, and K. Kang, Aqueous rechargeable Li and Na ion batteries, Chem., Rev., 114, 11788-11827 (2014). https://doi.org/10.1021/cr500232y
  46. F. Sauvage, L. Laffont, J. M. Tarascon, and E. Baudrin, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2, Inorg. Chem., 46, 3289-3294 (2007). https://doi.org/10.1021/ic0700250
  47. A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 13, 813-819 (2001). https://doi.org/10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
  48. K. C. Smith and R. Dmello, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric na-intercalation: porouselectrode modeling, J. Electrochem. Soc., 163, A530-A539 (2016). https://doi.org/10.1149/2.0761603jes
  49. K. Singh, H. J. M. Bouwmeester, L. C. P. M. de Smet, M. Z. Bazant, and P. M. Biesheuvel, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 064036 (2018).
  50. J. Lee, S. Kim, and J. Yoon, Rocking chair desalination battery based on prussian blue electrodes, ACS Omega, 2, 1653-1659 (2017). https://doi.org/10.1021/acsomega.6b00526
  51. T. Kim, C. A. Gorski, and B. E. Logan, Low energy desalination using battery electrode deionization, Environ. Sci. Technol. Lett., 4, 444-449 (2017). https://doi.org/10.1021/acs.estlett.7b00392
  52. J. Ahn, J. Lee, S. Kim, C. Kim, J. Lee, P. M. Biesheuvel, and J. Yoon, High performance electrochemical saline water desalination using silver and silver-chloride electrodes, Desalination, 476, 114216 (2020).
  53. H. Joo, J. Lee, and J. Yoon, Short review: Timeline of the electrochemical lithium recovery system using the spinel LiMn2O4 as a positive electrode, Energies (Basel), 13, 6235 (2020).
  54. S. Kim, H. Joo, T. Moon, S. H. Kim, and J. Yoon, Rapid and selective lithium recovery from desalination brine using an electrochemical system, Environ. Sci. Process. Impacts, 21, 667-676 (2019). https://doi.org/10.1039/C8EM00498F
  55. E. J. Calvo, Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation, ACS Omega, 6, 35213-35220 (2021). https://doi.org/10.1021/acsomega.1c05516
  56. G. Luo, X. Li, L. Chen, Y. Chao, and W. Zhu, Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis, Desalination, 548, 116228 (2023).
  57. S. K. Patel, M. Qin, W. S. Walker, and M. Elimelech, Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization, Environ. Sci. Technol., 54, 3663-3677 (2020). https://doi.org/10.1021/acs.est.9b07482
  58. S. Y. Pan, A. Z. Haddad, A. Kumar, and S. W. Wang, Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus, Water Res., 183, 116064 (2020).
  59. S. il Jeon, N. Kim, K. Jo, J. Ahn, H. Joo, C. Lee, C. Kim, and J. Yoon, Improvement in the desalination performance of membrane capacitive deionization with a bipolar electrode via an energy recovery process, Chem. Eng. J., 439, 135603 (2022).
  60. Y. M. Volfkovich, Capacitive deionization of water (a review), Russ. J. Electrochem., 56, 18-51 (2020). https://doi.org/10.1134/S1023193520010097
  61. C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review, Water Res., 128, 314-330 (2018). https://doi.org/10.1016/j.watres.2017.10.024
  62. A. N. Shocron, R. S. Roth, E. N. Guyes, R. Epsztein, and M. E. Suss, Comparison of ion selectivity in electrodialysis and capacitive deionization, Environ. Sci. Technol. Lett., 9, 889-899 (2022). https://doi.org/10.1021/acs.estlett.2c00551
  63. A. Thamilselvan, A. S. Nesaraj, and M. Noel, Review on carbon-based electrode materials for application in capacitive deionization process, Int. J. Environ. Sci. Technol. (Tehran), 13, 2961- 2976 (2016). https://doi.org/10.1007/s13762-016-1061-9
  64. H. Joo, S. Kim, S. Kim, M. Choi, S. H. Kim, and J. Yoon, Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate, Environ. Sci.: Water Res. Technol., 6, 290-295 (2020). https://doi.org/10.1039/C9EW00756C
  65. H. Yoon, T. Min, J. Lee, G. Lee, M. Jeon, and A. Kim, Lithium-selective hybrid capacitive deionization system with a Ag-coated carbon electrode and stop-flow operation, Environ. Sci.: Water Res. Technol., 9, 500-507 (2023). https://doi.org/10.1039/D2EW00791F
  66. A. Kumar, G. Naidu, H. Fukuda, F. Du, S. Vigneswaran, E. Drioli, and J. H. Lienhard, Metals recovery from seawater desalination brines: Technologies, opportunities, and challenges, ACS Sustain. Chem. Eng., 9, 7704-7712 (2021). https://doi.org/10.1021/acssuschemeng.1c00785
  67. S. Kim, J. Kim, S. Kim, J. Lee, and J. Yoon, Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant, Environ. Sci.: Water Res. Technol., 4, 175- 182 (2018). https://doi.org/10.1039/C7EW00454K
  68. J. Kang, T. Kim, H. Shin, J. Lee, J. I. Ha, and J. Yoon, Direct energy recovery system for membrane capacitive deionization, Desalination, 398, 144-150 (2016). https://doi.org/10.1016/j.desal.2016.07.025
  69. J. Ahn, S. Kim, S. il Jeon, C. Lee, J. Lee, and J. Yoon, Nafioncoated Prussian blue electrodes to enhance the stability and efficiency of battery desalination system, Desalination, 500, 114778 (2021).
  70. L. Wang, Y. Zhang, K. Moh, and V. Presser, From capacitive deionization to desalination batteries and desalination fuel cells, Curr. Opin. Electrochem., 29, 100758 (2021).