DOI QR코드

DOI QR Code

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming

바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구

  • Byungjin Lee (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Subeen Wi (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Dongkyu Lee (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Sangyeon Hwang (Hydrogen Energy Solution Center, Institute for Advanced Engineering) ;
  • Hyoungwoon Song (Hydrogen Energy Solution Center, Institute for Advanced Engineering)
  • 이병진 (고등기술연구원 수소에너지솔루션센터) ;
  • 위수빈 (고등기술연구원 수소에너지솔루션센터) ;
  • 이동규 (고등기술연구원 수소에너지솔루션센터) ;
  • 황상연 (고등기술연구원 수소에너지솔루션센터) ;
  • 송형운 (고등기술연구원 수소에너지솔루션센터)
  • Received : 2023.04.05
  • Accepted : 2023.06.05
  • Published : 2023.08.10

Abstract

For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

바이오가스 직접 개질을 위해 플라즈마 방전영역을 확장할 수 있는 3상 글라이딩 아크 플라즈마 수소 추출기를 설계하고 스팀과 메탄의 부피 비율, 가스 유량, 플라즈마 입력 전력에 대해 개질 특성을 평가하여 운전 조건을 최적화했다. 수소생산효율은 플라즈마 에너지 밀도가 작을수록 증가하는 것으로 확인되었지만 CXHY 혹은 carbon soot와 같은 촉매 내구성에 영향을 줄 수 있는 부산물들이 발생했다. 부산물 생성을 억제하기 위해 스팀과 메탄의 비율 혹은 플라즈마 에너지 밀도를 높여야 했고 플라즈마 개질기 최적 조건으로 스팀과 메탄의 비율을 3, 플라즈마 에너지 밀도를 5.5 ~ 6.0 kJ/L로 선정했다. 또한 플라즈마 개질기에서 발생하는 열이 반응가스를 500 ℃ 이상까지 올려줄 수 있어 바이오가스 버너의 연료사용량을 줄여 수소생산효율을 높일 수 있을 것으로 기대할 수 있다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421045-03)

References

  1. H. Ishaq, I. Dincer, and C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrog. Energy, 47, 26238-26264 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.149
  2. M. Yu, K. Wang, and H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen, Int. J. Hydrog. Energy, 46, 21261-21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016
  3. R. Yukesh Kannah, S. Kavitha, Preethi, O. Parthiba Karthikeyan, G. Kumar, N. V. Dai-Viet, and J. Rajesh Banu, Techno-economic assessment of various hydrogen production methods - A review, Bioresour. Technol., 319, 124554 (2021).
  4. A. G. Olabi, A. saleh bahri, A. A. Abdelghafar, A. Baroutaji, E. T. Sayed, A. H. Alami, H. Rezk, and M. A. Abdelkareem, Large-vscale hydrogen production and storage technologies: Current status and future directions, Int. J. Hydrog. Energy, 46, 23498-23528 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.110
  5. R. Kumar, A. Kumar, and A. Pal, Overview of hydrogen production from biogas reforming: Technological advancement, Int. J. Hydrog. Energy, 47, 34831-34855 (2022). https://doi.org/10.1016/j.ijhydene.2022.08.059
  6. J. M. Lavoie, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front. Chem., 2, 00081 (2014).
  7. S. A. Ghoneim, R. A. El-Salamony, and S. A. El-Temtamy, Review on innovative catalytic reforming of natural gas to syngas, World J. Eng. Res. Technol., 4, 116-139 (2016). https://doi.org/10.4236/wjet.2016.41011
  8. N. Kumar, M. Shojaee, and J. J. Spivey, Catalytic bi-reforming of methane: From greenhouse gases to syngas, Curr. Opin. Chem. Eng., 9, 8-15 (2015). https://doi.org/10.1016/j.coche.2015.07.003
  9. O. Muraza and A. Galadima, A review on coke management during dry reforming of methane, Int. J. Energy Res., 39, 1196-1216 (2015). https://doi.org/10.1002/er.3295
  10. I. Angelidaki, L. Treu, P. Tsapekos, G. Luo, S. Campanaro, H. Wenzel, and P. G. Kougias, Biogas upgrading and utilization: Current status and perspectives, Biotechnol. Adv., 36, 452-466 (2018). https://doi.org/10.1016/j.biotechadv.2018.01.011
  11. O. W. Awe, Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko, A review of biogas utilisation, purification and upgrading technologies, Waste Biomass Valori., 8, 267-283 (2017). https://doi.org/10.1007/s12649-016-9826-4
  12. U. S. Mohanty, M. Ali, M. R. Azhar, A. Al-Yaseri, A. Keshavarz, and S. Iglauer, Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review, Int. J. Hydrog. Energy, 46, 30750-30759 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.196
  13. D. B. L. Santos, F. B. Noronha, and C. E. Hori, Bi-reforming of methane for hydrogen production using LaNiO3/CexZr1-xO2 as precursor material, Int. J. Hydrog. Energy, 45, 13947-13959 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.096
  14. S. P. Gangoli, A. F. Gutsol, and A. A. Fridman, A non-equilibrium plasma source: Magnetically stabilized gliding arc discharge: I. Design and diagnostics, Plasma Sources Sci. Technol., 19, 065003 (2010).
  15. Z. Tan and P. Ai, CO2 reforming of biogas to obtain synthesis gas using non-thermal plasma, J. Energy Inst., 90, 864-874 (2017). https://doi.org/10.1016/j.joei.2016.08.008
  16. W. Wang, A. Berthelot, S. Kolev, X. Tu, and A. Bogaerts, CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model, Plasma Sources Sci. Technol., 25, 065012 (2016).
  17. W. Piavis and S. Turn, An experimental investigation of reverse vortex flow plasma reforming of methane, Int. J. Hydrog. Energy, 37, 17078-17092 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.126
  18. D. H. Lee, Y. H. Song, K. T. Kim, and J. O. Lee, Comparative study of methane activation process by different plasma sources, Plasma Chem. Plasma Process., 33, 647-661 (2013). https://doi.org/10.1007/s11090-013-9456-6
  19. B. Hrycak, D. Czylkowski, M. Jasinski, M. Dors, and J. Mizeraczyk, Hydrogen production via synthetic biogas reforming in atmospheric-pressure microwave (915 MHz) plasma at high gas-flow output, Plasma Chem. Plasma Process., 39, 695-711 (2019). https://doi.org/10.1007/s11090-019-09962-z
  20. S. M. A. Mousavi, W. Piavis, and S. Turn, Reforming of biogas using a non-thermal, gliding-arc, plasma in reverse vortex flow and fate of hydrogen sulfide contaminants, Fuel Process. Technol., 193, 378-391 (2019). https://doi.org/10.1016/j.fuproc.2019.05.031
  21. Y. X. Zeng, L. Wang, C. F. Wu, J. Q. Wang, B. X. Shen, and X. Tu, Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: Understanding the plasma-catalytic synergy, Appl. Catal. B: Environ., 224, 469-478 (2018). https://doi.org/10.1016/j.apcatb.2017.10.017
  22. J. Martin-Del-Campo, M. Uceda, S. Coulombe, and J. Kopyscinski, Plasma-catalytic dry reforming of methane over Ni-supported catalysts in a rotating gliding arc - Spouted bed reactor, J. CO2 Util., 46, 101474 (2021).
  23. D. H. Lee, H. Kang, Y. Kim, H. Song, H. Lee, J. Choi, K. T. Kim, and Y. H. Song, Plasma-assisted hydrogen generation: A mechanistic review, Fuel Process. Technol., 247, 107761 (2023)
  24. W. J. Chung, H. W. Park, and D. W. Park, Effects of arc discharge mode on the efficiency of biogas reforming in an AC-pulsed arc plasma system, Plasma Chem. Plasma Process., 37, 383-399 (2017). https://doi.org/10.1007/s11090-016-9773-7
  25. J. Zador, M. D. Fellows, and J. A. Miller, Initiation reactions in acetylene pyrolysis, J. Phys. Chem. A, 121, 4203-4217 (2017). https://doi.org/10.1021/acs.jpca.7b03040
  26. Y. Ma, J. D. Harding, and X. Tu, Catalyst-free low temperature conversion of n-dodecane for co-generation of COx-free hydrogen and C2 hydrocarbons using a gliding arc plasma, Int. J. Hydrog. Energy, 44, 26158-26168 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.067
  27. J. L. Liu, H. W. Park, W. J. Chung, W. S. Ahn, and D. W. Park, Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge, Chem. Eng. J., 285, 243-251 (2016). https://doi.org/10.1016/j.cej.2015.09.100
  28. S. B. Shenoy, A. Rabinovich, A. Fridman, and H. Pearlman, Process optimization of methane reforming to syngas using Gliding Arc Plasmatron, Plasma Process. Polym., 16 (2019).