DOI QR코드

DOI QR Code

Response Optimization for the Preparation of MIL-100(Fe)@COF Materials Using Design of Experiments

  • Min Hyung Lee (Department of Energy & Chemical Engineering, Graduate School of Convergence Science, Seoul National University of Science and Technology) ;
  • Sangmin Lee (Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Kye Sang Yoo (Department of Energy & Chemical Engineering, Graduate School of Convergence Science, Seoul National University of Science and Technology)
  • Received : 2023.05.02
  • Accepted : 2023.05.26
  • Published : 2023.08.10

Abstract

Three different optimization studies were conducted for the synthesis of MIL-100(Fe) and MIL-100(Fe)@COF using design of experiments. In the first study, the optimal concentration of precursors was determined using a mixture design method, and a modified molar ratio of 0.4155:0.2664:0.3182 was found to yield the highest crystallinity. In the second study, a central composite design was used to optimize the main factors of synthesis temperature and time with a synthesis temperature of 161℃ and a synthesis time of 12 hours. In the third study, a screening design method was used to determine the effect of five precursors on the formation of MIL-100(Fe)@COF, and the presence of characteristic peaks at 1552, 1483, and 1354 cm-1 was found to be important for the existence of the COF structure. MIL-100(Fe)@COF synthesized with a modified molar ratio of 0.4831:0.4169:0.1 was predicted to exhibit optimal conditions.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology)

References

  1. A. Lopez-Magano, A. Jimenez-Almarza, J. Jose Aleman, and R. Mas-Balleste, Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations, Catalysts, 10, 720 (2020).
  2. H. C. Zhou, J. R. Long, and O. M. Yaghi, Introduction to metal- organic frameworks, Chem. Rev., 112, 673-674 (2012). https://doi.org/10.1021/cr300014x
  3. H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013).
  4. J. L. C. Rowsell and O. M. Yaghi, Metal-organic frameworks: A new class of porous materials, Micropor. Mesopor. Mater., 73, 3-14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034
  5. S. Kitagawa, R. Kitaura, and S. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed., 43, 2334-2375 (2004). https://doi.org/10.1002/anie.200300610
  6. C. S. Diercks and O. M. Yaghi, The atom, the molecule, and the covalent organic framework, Science, 355 (2017).
  7. X. Feng, X. Ding, and D. Jiang, Covalent organic frameworks, Chem. Soc. Rev., 41, 6010-6022 (2012). https://doi.org/10.1039/c2cs35157a
  8. J. Li, J. Sculley, and H. C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932 (2012). https://doi.org/10.1021/cr200190s
  9. A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, and O. M. Yaghi, Porous, crystalline, covalent organic frameworks, Science, 310, 1166-1170 (2005). https://doi.org/10.1126/science.1120411
  10. O. K. Farha and J. T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Acc. Chem. Res., 43, 1166-1175 (2010). https://doi.org/10.1021/ar1000617
  11. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev., 112, 1105-1125 (2012). https://doi.org/10.1021/cr200324t
  12. S. U. Hassan, S. Shafique, B. A. Palvasha, M. H. Saeed, S. A. R. Naqvi, S. Nadeem, S. Irfan, T. Akhter, A. L. Khan, M. S. Nazir, M. Hussain, and Y. K. Park, Photocatalytic degradation of industrial dye using hybrid filler impregnated poly-sulfone membrane and optimizing the catalytic performance using Box-Behnken design, Chemosphere, 313, 137418 (2023).
  13. W. J. Liu, Y. K. Park, H. M. Bui, N. N. Huy, C. H. Lin, S. Ghotekar, T. Wi-Afedzi, K. Y. A. Lin, Hofmann-MOF-derived CoFeNi nanoalloy@CNT as a magnetic activator for peroxymono-sulfate to degrade benzophenone-1 in water, J. Alloy Compd., 937, 165189 (2023).
  14. T. C. Khiem, X. Duan, W. J. Liu, Y. K. Park, H. M. Bui, W. D. Oh, S. Ghotekar, Y. F. Tsang, and K. Y. A. Lin, MOF-templated hollow cobalt sulfide as an enhanced Oxone activator for degradation of UV Absorber: Key role of sulfur Vacancy-Induced highly active CoII sites, Chem. Eng. J., 453,139699 (2023).
  15. G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, and I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309, 2040-2042 (2005). https://doi.org/10.1126/science.1116275
  16. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, and M. B. Angles d'Auriac, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Ed., 45, 5974-5978 (2006). https://doi.org/10.1002/anie.200601878
  17. F. Zhang, J. Shi, Y. Jin, Y. Fu, Y. Zhong, and W. Zhu, Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols, Chem. Eng. J., 259, 183-190 (2015). https://doi.org/10.1016/j.cej.2014.07.119
  18. S. Bisgaard, Industrial use of statistically designed experiments: Case study references and some historical anecdotes, Quality Eng., 4, 547-562 (1992). https://doi.org/10.1080/08982119208918936
  19. M. A. Sedghamiz, S. Raeissi, F. Attar, M. Salimi, and K. Mehrabi, In-situ transesterification of residual vegetable oil in spent bleaching clay with alkali catalysts using CCD-RSM design of experiment, Fuel, 237, 515-521 (2019). https://doi.org/10.1016/j.fuel.2018.09.116
  20. Y. Seki, S. Seyhan, and M. Yurdakoc, Removal of boron from aqueous solution by adsorption on Al2O3 based materials using full factorial design, J. Hazard. Mater., 138, 60-66 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.033
  21. L. Ilzarbe, M. J. Alvarez, E. Viles, and M. Tanco. Practical applications of design of experiments in the field of engineering: a bibliographical review, Qual. Reliab. Eng. Int., 24, 417-428 (2008). https://doi.org/10.1002/qre.909