DOI QR코드

DOI QR Code

N-retinylidene-N-retinylethanolamine degradation in human retinal pigment epithelial cells via memantine- and ifenprodil-mediated autophagy

  • Jae Rim Lee (College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University) ;
  • Kwang Won Jeong (College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University)
  • Received : 2023.01.20
  • Accepted : 2023.04.27
  • Published : 2023.09.01

Abstract

N-methyl-D-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove N-retinylidene-N-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2020R1A6A1A03043708 and 2021R1A2C1011132) and Gachon University Research Fund of 2021 (GCU-202109950001).

References

  1. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron. 1997;18:493-503.  https://doi.org/10.1016/S0896-6273(00)81249-0
  2. Yau SY, Bettio L, Vetrici M, Truesdell A, Chiu C, Chiu J, Truesdell E, Christie BR. Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiol Dis. 2018;113:11-22.  https://doi.org/10.1016/j.nbd.2018.01.014
  3. Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M, Chodounska H, Vyklicky L Jr. Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids. 2011;76:1409-1418.  https://doi.org/10.1016/j.steroids.2011.09.002
  4. Swietlik D, Kusiak A, Ossowska A. Computational modeling of therapy with the NMDA antagonist in neurodegenerative disease: information theory in the mechanism of action of memantine. Int J Environ Res Public Health. 2022;19:4727. 
  5. Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and Snitrosylation. Curr Drug Targets. 2007;8:621-632.  https://doi.org/10.2174/138945007780618472
  6. Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol. 2006;6:61-67.  https://doi.org/10.1016/j.coph.2005.09.007
  7. Hirano K, Fujimaki M, Sasazawa Y, Yamaguchi A, Ishikawa KI, Miyamoto K, Souma S, Furuya N, Imamichi Y, Yamada D, Saya H, Akamatsu W, Saiki S, Hattori N. Neuroprotective effects of memantine via enhancement of autophagy. Biochem Biophys Res Commun. 2019;518:161-170.  https://doi.org/10.1016/j.bbrc.2019.08.025
  8. Companys-Alemany J, Turcu AL, Schneider M, Muller CE, Vazquez S, Grinan-Ferre C, Pallas M. NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cell Mol Life Sci. 2022;79:408. 
  9. Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells. 2020;9:1131. 
  10. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728-741.  https://doi.org/10.1016/j.cell.2011.10.026
  11. Bechthold E, Schreiber JA, Lehmkuhl K, Frehland B, Schepmann D, Bernal FA, Daniliuc C, Alvarez I, Garcia CV, Schmidt TJ, Seebohm G, Wunsch B. Ifenprodil stereoisomers: synthesis, absolute configuration, and correlation with biological activity. J Med Chem. 2021;64:1170-1179.  https://doi.org/10.1021/acs.jmedchem.0c01912
  12. Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL, Zhang ZY. Ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity after experimental subarachnoid hemorrhage. Transl Stroke Res. 2021;12:1067-1080.  https://doi.org/10.1007/s12975-021-00906-4
  13. Sparrow JR, Cai B, Fishkin N, Jang YP, Krane S, Vollmer HR, Zhou J, Nakanishi K. A2E, a fluorophore of RPE lipofuscin: can it cause RPE degeneration? Adv Exp Med Biol. 2003;533:205-211.  https://doi.org/10.1007/978-1-4615-0067-4_26
  14. Gray DA, Woulfe J. Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowledge Environ. 2005;2005:re1. 
  15. Li WW, Wang HJ, Tan YZ, Wang YL, Yu SN, Li ZH. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Exp Cell Res. 2021;403:112585. 
  16. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80:595-606.  https://doi.org/10.1016/j.exer.2005.01.007
  17. Shin CY, Lee MH, Kim HM, Chung HC, Kim DU, Lee JH, Jeong KW. Protective effect of Ribes nigrum extract against blue light-induced retinal degeneration in vitro and in vivo. Antioxidants (Basel). 2022;11:832. 
  18. Pham TNM, Shin CY, Park SH, Lee TH, Ryu HY, Kim SB, Auh K, Jeong KW. Solanum melongena L. extract protects retinal pigment epithelial cells from blue light-induced phototoxicity in in vitro and in vivo models. Nutrients. 2021;13:359. 
  19. Jin HL, Lee SC, Kwon YS, Choung SY, Jeong KW. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors. J Pharm Biomed Anal. 2016;117:560-567.  https://doi.org/10.1016/j.jpba.2015.10.010
  20. Lee JR, Jeong KW. NMDA receptor antagonists degrade lipofuscin via autophagy in human retinal pigment epithelial cells. Medicina (Kaunas). 2022;58:1129. 
  21. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313-326.  https://doi.org/10.1016/j.cell.2010.01.028
  22. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488-492.  https://doi.org/10.1038/35044114
  23. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee MS, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618-631.  https://doi.org/10.1016/j.molcel.2013.08.003
  24. Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H, Yamamoto M. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A. 2012;109:13561-13566.  https://doi.org/10.1073/pnas.1121572109
  25. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 2015;11:e1004987. 
  26. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 2011;44:279-289.  https://doi.org/10.1016/j.molcel.2011.07.039
  27. Ye X, Zhou XJ, Zhang H. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol. 2018;9:2334. 
  28. Ishibashi K, Fujita N, Kanno E, Omori H, Yoshimori T, Itoh T, Fukuda M. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. Autophagy. 2011;7:1500-1513.  https://doi.org/10.4161/auto.7.12.18025
  29. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092-2100.  https://doi.org/10.1091/mbc.e07-12-1257
  30. Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1:383-386.  https://doi.org/10.1016/S1474-4422(02)00164-3
  31. Winkler D, Leyhe T. [Alzheimer's disease - State of the art, and emerging diagnostics and therapeutics]. Ther Umsch. 2018;75:432-437. German.  https://doi.org/10.1024/0040-5930/a001020
  32. Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE. Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology. 2007;114:253-262.  https://doi.org/10.1016/j.ophtha.2006.10.040
  33. Baird PN, Robman LD, Richardson AJ, Dimitrov PN, Tikellis G, McCarty CA, Guymer RH. Gene-environment interaction in progression of AMD: the CFH gene, smoking and exposure to chronic infection. Hum Mol Genet. 2008;17:1299-1305.  https://doi.org/10.1093/hmg/ddn018
  34. Hammer M, Richter S, Guehrs KH, Schweitzer D. Retinal pigment epithelium cell damage by A2-E and its photo-derivatives. Mol Vis. 2006;12:1348-1354. 
  35. Shin CY, Jeong KW. Photooxidation of A2E by blue light regulates heme oxygenase 1 expression via NF-κB and lysine methyltransferase 2A in ARPE-19 cells. Life (Basel). 2022;12:1698. 
  36. Jeong SY, Gu X, Jeong KW. Photoactivation of N-retinylidene-N-retinylethanolamine compromises autophagy in retinal pigmented epithelial cells. Food Chem Toxicol. 2019;131:110555. 
  37. Jin HL, Jeong KW. Transcriptome analysis of long-term exposure to blue light in retinal pigment epithelial cells. Biomol Ther (Seoul). 2022;30:291-297.  https://doi.org/10.4062/biomolther.2021.155
  38. Yoon WS, Yeom MY, Kang ES, Chung YA, Chung DS, Jeun SS. Memantine induces NMDAR1-mediated autophagic cell death in malignant glioma cells. J Korean Neurosurg Soc. 2017;60:130-137.  https://doi.org/10.3340/jkns.2016.0101.006
  39. Yao Y, Ju P, Liu H, Wu X, Niu Z, Zhu Y, Zhang C, Fang Y. Ifenprodil rapidly ameliorates depressive-like behaviors, activates mTOR signaling and modulates proinflammatory cytokines in the hippocampus of CUMS rats. Psychopharmacology (Berl). 2020;237:1421-1433.  https://doi.org/10.1007/s00213-020-05469-0
  40. Al-Bari MAA, Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 2020;1467:3-20.  https://doi.org/10.1111/nyas.14305
  41. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16:46-56. https://doi.org/10.1038/cdd.2008.110