DOI QR코드

DOI QR Code

Analytical Study on Ribs and Lengths of Splice Sleeve Influencing Structural Performance

구조 성능에 영향을 미치는 스플라이스 슬리브의 리브 및 길이에 관한 해석적 연구

  • Lee, Sang-Sup (Korea Institute of Civil Engineering and Building Technology) ;
  • Boo, Yoon-Seob (Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Sang-Min (Korea Institute of Civil Engineering and Building Technology)
  • Received : 2023.05.31
  • Accepted : 2023.08.03
  • Published : 2023.08.30

Abstract

This study aims to examine how the performance of mechanical rebar splices is impacted by the ribs and length of hybrid sleeves, utilizing the finite element (FE) method. The cylindrical hybrid splice sleeve is crafted through machining, composed of SM45C material, featuring an inner diameter of 31.2 mm and a thickness of 4.3 mm. In the FE models, the rebar's steel grade is SD600 with a diameter of 22 mm (D22), while the grout's compressive strength is set at 100 MPa. To simulate the nonlinear behavior and fracture of the rebars, the analysis employs the true stress-strain relationship and ductile damage conditions. Moreover, contact interactions between the rebar, grout, and sleeve surfaces are modeled in Abaqus/Explicit using an exponential pressure-overclosure relationship and kinetic friction. The analysis parameters under scrutiny encompass the spacing and profile of the sleeve rib and the sleeve length. Results indicate that the sleeve rib spacing should not exceed twice the rebar rib spacing, and the sleeve length should be more than 6.0d to induce rebar fracture as the failure mode. When considering the profile of the sleeve rib, the ability to resist slippage between the sleeve and grout is most effective in the sequence of semicircular, trapezoidal, and rectangular shapes.

Keywords

Acknowledgement

이 연구는 2023년도 한국건설기술연구원(KICT)의 연구비 지원에 의한 결과의 일부임. 과제번호 [KICT] 20230176-001

References

  1. Alias, A,, Sapawi, F., Kusbiantoro, A., Zubir, M., & Rahman A. B. A. (2014). Performance of Grouted Splice Sleeve Connector under Tensile Load, Journal of Mechanical Engineering and Science, 7(1), 1094-1102.
  2. Amleh, L. (2000). Bond Deterioration of Reinforcing Steel in Concrete due to Corrosion, Ph.D. thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Canada.
  3. Amleh, L., & Ghosh, A. (2006). Modeling the Effect of Corrosion on Bond Strength at the Steel-Concrete Interface with Finite-Element Analysis, Canadian Journal of Civil Engineering, 33, 673-682. https://doi.org/10.1139/l06-052
  4. Bracamonte, A. J., Mercado-Puche, V., Martinez-Arguelles, G., Pumarejo, L. F. Ortiz, A. R., & Herazo, L. C. S. (2023). Effect of Finite Element Method (FEM) Mesh Size on the Estimation of Concrete Stress-Strain Parameters. Applied Sciences, 13(4), 1-13.
  5. Carreira, D. J., & Chu, K. H. (1985). Stress-Strain Relationship for Plain Concrete in Compression, ACI Journal Proceedings, 82(6), 797-804.
  6. Chen, J., Wang, Z., Liu, Z., & Ju, S. (2022). Experimental Investigation of Mechanical Properties of Steel Half-grouted Sleeve Splice with Rebar Bonding Defects, Journal of Building Engineering, 50, 1-15.
  7. Einea, A., Yamane, T., & Tadros, M. K. (1995). Grout-filled Pipe Splices for Precast Concrete Construction, PCI Journal, 40, 82-93.
  8. Gao, Q., & Zhao, W. (2021). Experimental Study on Factors Influencing the Connection Performance of Grouted Welded Sleeves under Uniaxial Tensile Loads, Journal of Building Engineering, 43, 1-12.
  9. Guler, K., Demir, F., & Pakdamar, F. (2012). Stress-Strain Modelling of High Strength Concrete by Fuzzy Logic Approach, Construction and Building Materials, 37, 680-684.
  10. Heo, J. H., & Kim, H. S. (2018). Bending Moment Calculation Method and Optimum Element Size for Finite Element Analysis with Continuum Elements, Journal of the Computational Structural Engineering Institute of Korea, 31(1), 9-16. https://doi.org/10.7734/COSEIK.2018.31.1.9
  11. Hsu, T. T. C., & Mo, Y. L (2010). Unified Theory of Concrete Structures, 2nd edition, John Wiley & Sons Inc.
  12. Kang, D. M., Park, Y. G. Lee, H. G., & Moon, D. Y. (2017). Experimental Studies on Bond and Splice Performance of Splice Sleeve for Connecting Rebar, Journal of The Korean Society for Railway, 20(2), 257-264. https://doi.org/10.7782/JKSR.2017.20.2.257
  13. Lee, S. S., Boo, Y. S., & Shin, S. M. (2023). Finite Element Analysis on the Effect of Splice Sleeve Diameter and Grout Strength, Journal of the Architectural Institute of Korea, 39(7), 227-234.
  14. Lee, Y. H., Song, J. J., Cho, J. Y., & Kim, D. H. (2011). Development of Non-Shrink Mortar Grouting Type Splice Sleeve, Journal of Korean Society of Hazard Mitigation, 11(2), 67-73.
  15. Ling, J. H., Rahman, A. B. A., Ibrahim, I. S., & Hamid, Z. A. (2016). Tensile capacity of grouted splice sleeves, Engineering Structures, 111, 285-296. https://doi.org/10.1016/j.engstruct.2015.12.023
  16. Liu, C., Pan, L., Liu, H., Tong, H., Yang, Y., & Chen, W. (2020). Experimental and numerical investigation on mechanical properties of grouted-sleeve splices, Construction and Building Material, 260, 1-12.
  17. Mert, T. (2010). Finite Element Analysis of Bolted Steel Plates and the Effect of Element Type and Size on Simulation Results, International Journal of Arts and Science, 3(9), 404-414.
  18. Oh, K. N., Lee, J. L., Kim, J. S., Kim, H. K., Yoo, S. K., & Park, B. M. (2005). An Experimental Study on the Structural Performance of Steel Pipe Splice Sleeve for the High Strength Reinforcing Bar(SD500), Proceeding of Annual Conference of the Architectural Institute of Korea, 25(1), 445-448.
  19. Seo, S. Y., Nam, B. R., & Kim, S. K. (2016). Tensile Strength of the Grout-filled Head-splice-sleeve, Construction and Building Materials, 124, 155-166. https://doi.org/10.1016/j.conbuildmat.2016.07.028
  20. Sezen, H., & Moehle, J. (2003). Bond-slip behavior of reinforced concrete members, Proceedings of FIB symposium on concrete structures in seismic regions, CEB-FIP, 10, 1-10.
  21. Tu, S., Ren, X., He, J., & Zhang, Z. (2020). Stress-Strain Curves of Metallic Materials and Post-Necking Strain Hardening Characterization: A review, Fatigue & Fracture of Engineering Materials & Structures, 43(1), 1-19. https://doi.org/10.1111/ffe.13052
  22. Yee, A. A. (2001). Structural and economic benefits of precast/prestressed concrete construction, PCI Journal, 46(4), 34-43.  https://doi.org/10.15554/pcij.07012001.34.42