DOI QR코드

DOI QR Code

Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties

수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향

  • Ho-Seong Heo (Graduate school, Mokpo national maritime university) ;
  • Dong-Ho Shin (Graduate school, Mokpo national maritime university) ;
  • Seong-Jong Kim (Division of marine engineering, Mokpo national maritime university)
  • 허호성 (목포해양대학교 대학원) ;
  • 신동호 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2023.01.13
  • Accepted : 2023.02.01
  • Published : 2023.08.30

Abstract

The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

Keywords

References

  1. H. B. Moon, S. Y. Park and J. R. Woo, Staying on convention or leapfrogging to eco-innovation?: Identifying early adopters of hydrogen-powered vehicles, Technological Forecasting and Social Change, 171, 120995 (2021). Doi: https://doi.org/10.1016/j.techfore.2021.120995
  2. I. J. Kim, J. H. Kim and J. S. Lee, Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea, Applied Energy, 260, 114281 (2020). Doi: https://doi.org/10.1016/j.apenergy.2019.114281
  3. A. J. Appleby, Issues in fuel cell commercialization, Journal of Power Sources, 58, 153 (1996). Doi: https://doi.org/10.1016/S0378-7753(96)02384-1
  4. Q. Chen, G. Zhang, X. Zhang, C. Sun, K. Jiao and Y. Wang, Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability, Applied Energy, 286, 116496 (2021). Doi: https://doi.org/10.1016/j.apenergy.2021.116496
  5. D. I. Seo and J. B. Lee, Comparison of hydrogen embrittlement resistance between 2205 duplex stainless steels and type 316L austenitic stainless steels under the cathodic applied potential, Corrosion Science and Technology, 15, 237 (2016). Doi: https://doi.org/10.14773/cst.2016.15.5.237
  6. S. K. Dwivedi, M. Vishwakarma, Hydrogen embrittlement in different materials: A review, International Journal of Hydrogen Energy, 43, 21603 (2018). Doi: https://doi.org/10.1016/j.ijhydene.2018.09.201
  7. B. S. Yilbas, A. Coban, R. Kahraman and M. M. Khaled, Hydrogen embrittlement of Ti-6Al-4V alloy with surface modification by TiN coating, International Journal of Hydrogen Energy, 23, 483- (1995). Doi: https://doi.org/10.1016/S0360-3199(97)00087-6
  8. K. S. Forcey, D. K. Ross and C. H. Wu, The formation of hydrogen permeation barriers on steels by aluminising, Journal of Nuclear Materials, 182, 36 (1991). Doi: https://doi.org/10.1016/0022-3115(91)90413-2
  9. L. Liu, Q. Ruan, S. Xiao, X. Meng, C. Huang, Y. Wu, R. K. Y. Fu, P. K. Chu, Fabrication and hydrogen permeation resistance of dense CrN coatings, Surface and Coatings Technology, 437, 128326 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128326
  10. T. Takahashi, K. Sasaki, Low cycle thermal fatigue of aluminum alloy cylinder head in consideration of changing metrology microstructure, Procedia Engineering, 2, 767 (2010). Doi: https://doi.org/10.1016/j.proeng.2010.03.083
  11. H. K. Hwang, D. H. Shin, S. J. Kim, Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle, Corrosion Science and Technology, 21, 503 (2022). Doi: https://doi.org/10.14773/cst.2022.21.6.503
  12. Z. Zhang, X. Zhou, H. Zhang, J. Guo and Hua Ning, Hydrogen penetration and diffusion on Mg17Al12 (110) surface: A density functional theory investigation, International Journal of Hydrogen Energy, 42, 26013 (2017). Doi: https://doi.org/10.1016/j.ijhydene.2017.08.176
  13. Y. Li, L. Zhao, W. Kan and H. Pan, Phase transformations and micro cracks induced by hydrogen in cold-rolled and annealed AISI 304 stainless steels, International Journal of Hydrogen Energy, 37, 8724 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.02.083
  14. N. D. Nam and J. G. Kim, Electrochemical Behavior of CrN Coated on 316L Stainless Steel in Simulated Cathodic Environment of Proton Exchange Membrane Fuel Cell, Japanese Journal of Applied Physics, 47, 6887 (2008). Doi: https://doi.org/10.1143/JJAP.47.6887
  15. T. Li, Z. Yan, Z. Liu, Y. Yan and Y. Chen, Surface microstructure and performance of TiN monolayer film on titanium bipolar plate for PEMFC, International Journal of Hydrogen Energy, 46, 31382 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2021.07.021
  16. M. A. Gharavi, S. Kerdsongpanya, S. Schmidt, F. Eriksson, N. V. Nong, J. Lu, B. Balke, D. Fournier, L. Belliard, A. I. Febvrier, C. Pallier and P Eklund, Microstructure and thermoelectric properties of CrN and CrN/Cr2N thin films, Journal of Physics D: Applied Physics, 51, 355302 (2018). Doi: https://doi.org/10.1088/1361-6463/aad2ef
  17. S. K. Singh, S. Chattopadhyaya, A. Pramanik, S. Kumar, S. M. Pandey, R. S. Walia, S. Sharma, A. M. Khan, S. P. Dwivedi, S. Singh and S. Wojciechowski, Effect of alumina oxide nano-powder on the wear behaviour of CrN coating against cylinder liner using response surface methodology: processing and characterizations, Journal of Materials Research and Technology, 16, 1102 (2022). Doi: https://doi.org/10.1016/j.jmrt.2021.12.062
  18. D. Zhang, L. Duan, L. Guo, Z. Wang, J. Zhao, W. H. Tuan and K. Niihara, TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating, International Journal of Hydrogen Energy, 36, 9155 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2011.04.123
  19. V. M. Polyanskii, Role of hydrogen embrittlement in the corrosion cracking of aluminum alloys, Material Science, 21, 301 (1986). Doi: https://doi.org/10.1007/BF00726550
  20. L. Liu, Q. Ruan, S. Xiao, X. Meng, C. Huang, Y. Wu, R. K. Y. Fu and P. K. Chu, Fabrication and hydrogen permeation resistance of dense CrN coatings, Surface and Coatings Technology, 437, 128326 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128326
  21. M. Tamura, Hydrogen Permeation Characteristics of TiN-Coated Stainless Steels, Journal of Materials and Engineering, 5, 204 (2015). Doi: https://doi.org/10.17265/2161-6213/2015.5-6.002
  22. S. C. Lee, W. Y. Ho, C. C. Huang, E. I. Meletis and Y. Liu, Hydrogen embrittlement and fracture toughness of a titanium alloy with surface modification by hard coatings, Journal of Materials Engineering and Performance, 5, 64 (1996). Doi: https://doi.org/10.1007/BF02647271
  23. S. J. Kim, and K. Y. Kim, An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation, Corrosion Science and Technology, 16, 209 (2017). Doi: https://doi.org/10.14773/cst.2017.16.4.209
  24. S. J. Kim, Theoretical Considerations of Numerical Model for Hydrogen Diffusion Behavior of High-Strength Steel Under Combined Action of Tensile Stress and H2S Corrosion, Corrosion Science and Technology, 18, 102 (2019). Doi: https://doi.org/10.14773/cst.2019.18.3.102
  25. J. Song and W. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron, Nature Mater, 12, 145 (2013). Doi: https://doi.org/10.1038/nmat3479
  26. S. R. Dyer, L. V. J. Lassila, M. Jokinen and P. K. Vallittu, Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials, The Journal of Prosthetic Dentistry, 94, 219 (2005). Doi: https://doi.org/10.1016/j.prosdent.2005.06.008
  27. W. Gerberich, J. Michler, W. Mook, R. Ghisleni, F. Ostlund, D. Stauffer and R. Ballarini, Scale effects for strength, ductility, and toughness in "brittle" materials, Journal of Materials Research, 24, 898(2009). Doi: https://doi.org/10.1557/jmr.2009.0143
  28. T. Mizuno, M. Tamura, Y. Hibino and A. Nakayama, Effect of surface coating on H2 permeation through Stainless Steel, Proc. 3rd International Energy Conversion Engineering Conf., AIAA 2005-5568, American Institute of Acronautics and Astronautics, San Francisco, CA (2012). Doi: https://doi.org/10.2514/6.2005-5568
  29. B. L. Ou, J. G. Yang and M. Y. Wei, Effect of Homogenization and Aging Treatment on Mechanical Properties and Stress-Corrosion Cracking of 7050 Alloys, Metallurgical and Materials Transactions A, 38, 1760 (2007). Doi: https://doi.org/10.1007/s11661-007-9200-z
  30. R. D. Doherty, Role of interfaces in kinetics of internal shape changes, Metal Science, 16, 1 (1980). Doi: https://doi.org/10.1179/030634582790427019
  31. P. N. Rao, D. Singh and R. Jayaganthan, Effect of annealing on microstructure and mechanical properties of Al 6061 alloy processed by cryorolling, Materials Science and Technology, 29, 76 (2013). Doi: https://doi.org/10.1179/1743284712Y.0000000041