DOI QR코드

DOI QR Code

A CONJECTURE OF GROSS AND ZAGIER: CASE E(ℚ)tor ≅ ℤ/2ℤ OR ℤ/4ℤ

  • Dongho Byeon (Department of Mathematical Sciences Research Institute of Mathematics Seoul National University) ;
  • Taekyung Kim (Cryptolab) ;
  • Donggeon Yhee (Department of Mathematical Sciences Seoul National University)
  • Received : 2023.02.15
  • Accepted : 2023.07.11
  • Published : 2023.09.01

Abstract

Let E be an elliptic curve defined over ℚ of conductor N, c the Manin constant of E, and m the product of Tamagawa numbers of E at prime divisors of N. Let K be an imaginary quadratic field where all prime divisors of N split in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group of E over K. Let 2uK be the number of roots of unity contained in K. Gross and Zagier conjectured that if PK has infinite order in E(K), then the integer c · m · uK · |III(E/K)| $\frac{1}{2}$ is divisible by |E(ℚ)tor|. In this paper, we prove that this conjecture is true if E(ℚ)tor ≅ ℤ/2ℤ or ℤ/4ℤ except for two explicit families of curves. Further, we show these exceptions can be removed under Stein-Watkins conjecture.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2023R1A2C1002612).

References

  1. D. Byeon, T. Kim, and D. Yhee, A conjecture of Gross and Zagier: case E(ℚ)tor ≅ ℤ/3ℤ, Int. J. Number Theory 15 (2019), no. 9, 1793-1800. https://doi.org/10.1142/S1793042119501008
  2. D. Byeon, T. Kim, and D. Yhee, A conjecture of Gross and Zagier: case E(ℚ)tor ≅ ℤ/2ℤ ⊕ ℤ/2ℤ, ℤ/2ℤ ⊕ ℤ/4ℤ or ℤ/2ℤ ⊕ ℤ/6ℤ, Int. J. Number Theory 16 (2020), no. 7, 1567-1572. https://doi.org/10.1142/S1793042120500827
  3. Z. Cao, C. Chu, and W. C. Shiu, The exponential Diophantine equation AX2 + BY2 = λkZ and its applications, Taiwanese J. Math. 12 (2008), no. 5, 1015-1034. https://doi.org/10.11650/twjm/1500574244
  4. J. Cremona, Elliptic curve data, available at http://johncremona.github.io/ecdata.
  5. T. Goto, A study on the Selmer groups of elliptic curves with a rational 2-torsion, Doctoral thesis, Kyushu University, 2002.
  6. B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225-320. https://doi.org/10.1007/BF01388809
  7. V. A. Kolyvagin, Euler systems, in The Grothendieck Festschrift, Vol. II, 435-483, Progr. Math., 87, Birkhauser Boston, Boston, MA, 1990.
  8. K. Kramer, Arithmetic of elliptic curves upon quadratic extension, Trans. Amer. Math. Soc. 264 (1981), no. 1, 121-135. https://doi.org/10.2307/1998414
  9. D. Lorenzini, Torsion and Tamagawa numbers, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 5, 1995-2037. https://doi.org/10.5802/aif.2664
  10. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S. 47 (1977), 33-186. https://doi.org/10.1007/BF02684339
  11. P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167-195. https://doi.org/10.1515/crll.2004.048
  12. W. A. Stein and M. Watkins, A database of elliptic curves-first report, in Algorithmic number theory (Sydney, 2002), 267-275, Lecture Notes in Comput. Sci., 2369, Springer, Berlin, 2002. https://doi.org/10.1007/3-540-45455-1_22
  13. W. A. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. 2004 (2004), no. 27, 1395-1405. https://doi.org/10. 1155/S1073792804133916 https://doi.org/10.1155/S1073792804133916
  14. G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75-106. https://doi.org/10.1007/BF01388845
  15. V. Vatsal, Multiplicative subgroups of J0(N) and applications to elliptic curves, J. Inst. Math. Jussieu 4 (2005), no. 2, 281-316. https://doi.org/10.1017/S147474800500006X