DOI QR코드

DOI QR Code

Quantification of Turbulence Characteristics on the Concentration Distributions of Traffic-related Pollutants Near Roadways

도로변 난류특성과 교통량에 따른 차량유발 난류강도 정량화: 도로변 풍상/풍하 측에서의 3차원 풍속 동시 측정에 기반

  • Yongmi Park (Division of Earth and Environmental System Sciences, Pukyong National University) ;
  • Subin Han (Division of Earth and Environmental System Sciences, Pukyong National University) ;
  • HanGyeol Song (Division of Earth and Environmental System Sciences, Pukyong National University) ;
  • Seung-Bok Lee (Center for Sustainable Environment Research, Korea Institute of Science and Technology) ;
  • Kyung-Hwan Kwak (School of Natural Resources and Environmental Science, Kangwon National University) ;
  • Changhyuk Kim (School of Civil and Environmental Engineering, Pusan National University) ;
  • Wonsik Choi (Division of Earth and Environmental System Sciences, Pukyong National University)
  • 박용미 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 한수빈 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 송한결 (부경대학교 지구환경시스템과학부 환경대기과학전공) ;
  • 이승복 (한국과학기술연구원 지속가능환경연구단) ;
  • 곽경환 (강원대학교 환경융합학부) ;
  • 김창혁 (부산대학교 환경공학과) ;
  • 최원식 (부경대학교 지구환경시스템과학부 환경대기과학전공)
  • Received : 2023.05.09
  • Accepted : 2023.07.04
  • Published : 2023.08.31

Abstract

Turbulence produced on roadways is one of the major factors determining the dilution rates at the initial stage of traffic emissions of air pollutants and, thus, the distribution of air pollutants near the roadways. Field experiments were conducted on Gyeongbu Highway, one of the busiest highways in Korea, for 4~7 days in winter, spring, and summer. Two three-dimensional ultrasonic anemometers were installed on both sides of the highway to estimate turbulence intensities (vertical wind fluctuation and kinetic turbulence energy) induced by the roadway. Roadway-induced turbulence consists of three components: structural road-induced turbulence (S-RIT), thermal road-induced turbulence (T-RIT), and vehicle-induced turbulence (VIT). The contribution of T-RIT to the total RIT was insignificant (less than 10%), and the majority of RIT was S-RIT (by the highway embankment) and VIT. In this study, we propose the empirical relationships of VIT as a function of traffic density and wind speed under free-flow traffic conditions. Although this empirical relationship appears to underestimate the VIT, it can be applied to the air quality models easily because the relationship is simple and only needs readily obtainable input variables (wind speed and traffic information).

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 심사위원께 감사를 드립니다. 이 연구는 기후변화대응 기술개발 사업(NRF-2019M1A2A2 103954)의 지원을 받아 수행되었습니다.

References

  1. Alonso-Estebanez, A., P. Pascual-Munoz, C. Yague, R. Laina and D. Castro-Fresno, 2012: Field experimental study of traffic-induced turbulence on highways, Atmos. Environ., 61, 189-196, doi:10.1016/j.atmosenv.2012.07.032.
  2. Anandakumar, K., 1999: A study on the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ., 33, 3911-3918, doi:10.1016/S1352-2310(99)00133-8.
  3. Baldauf, R., E. Thoma, A. Khlystov, V. Isakov, G. Bowker, T. Long, and R. Snow, 2008: Impacts of noise barriers on near-road air quality, Atmos. Environ., 42, 7502-7507, doi:10.1016/j.atmosenv.2008.05.051.
  4. Baumer, D., B. Vogel, and F. Fiedler, 2005: A new parameterisation of motorway-induced turbulence and its application in a numerical model. Atmos. Environ., 39, 5750-5759, doi:10.1016/j.atmosenv.2004.10.046.
  5. Choi, W., I. C. Faloona, M. McKay, A. H. Goldstein, and B. Baker, 2011: Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX. Atmos. Chem. Phys., 11, 6837-6853, doi:10.5194/acp-11-6837-2011.
  6. Choi, W., M. He, V. Barbesant, K. H. Kozawa, S. Mara, A. M. Winer, and S. E. Paulson, 2012: Prevalence of wide area impacts downwind of freeways under presunrise stable atmospheric conditions. Atmos. Environ., 62, 318-327, doi:10.1016/j.atmosenv.2012.07.084.
  7. Gordon, M., R. M. Staebler, J. Liggio, P. Makar, S.-M. Li, J. Wentzell, G. Lu, P. Lee, and J. R. Brook, 2012: Measurements of enhanced turbulent mixing near highways. J. Appl. Meteor. Climatol., 51, 1618-1632, doi:10.1175/JAMC-D-11-0190.1.
  8. Hagler, G. S. W., R. W. Baldauf, E. D. Thoma, T. R. Long, R. F. Snow, J. S. Kinsey, L. Oudejans, and B. K. Gullett, 2009: Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmos. Environ., 43, 1229-1234, doi:10.1016/j.atmosenv.2008.11.024.
  9. Huertas, J. I., and D. F. Prato, 2020: CFD Modeling of Near-Roadway Air Pollution. Environ. Model Assess., 25, 129-145, doi:10.1007/s10666-019-09666-w.
  10. Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152-2169, doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.
  11. Kalthoff, N., D. Baumer, U. Corsmeier, M. Kohler, and B. Vogel, 2005: Vehicle-induced turbulence near a motorway. Atmos. Environ., 39, 5737-5749, doi:10.1016/j.atmosenv.2004.06.048.
  12. Kastner-Klein, P., R. Berkowicz, and E. J. Plate, 2000: Modelling of vehicle-induced turbulence in air pollution studies for streets. Int. J. Environ. Pollut., 14, 496-507, doi:10.1504/IJEP.2000.000573.
  13. Kim, J., J.-H. Kim, and R. D. Sharman, 2021: Characteristics of Energy Dissipation Rate observed from the High-Frequency Sonic Anemometer at Boseong, South Korea. MDPI Atmosphere., 12, 837, doi:10.3390/atmos12070837.
  14. Kim, K. H., S.-B. Lee, S. H. Woo, and G.-N. Bae, 2014: NOx profile around a signalized intersection of busy roadway. Atmos. Environ., 97, 144-154, doi:10.1016/j.atmosenv.2014.08.012.
  15. Korea Expressway Corporation, 2022: Highway traffic statistics for 2021. [Available online at http://data.ex.co.kr/dataset/datasetList/list?pn=1&CATEGORY=TR&GROUP_TR=TRAF_VDS].
  16. Kumar, P., M. Ketzel, S. Vardoulakis, L. Pirjola, and R. Britter, 2011: Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment-A review. J. Aerosol. Sci., 42, 580-603, doi:10.1016/j.jaerosci.2011.06.001.
  17. Mahrt, L., 2011: Surface wind direction variability. J. Appl. Meteor. Climatol., 50, 144-152, doi:10.1175/2010JAMC2560.1.
  18. Makar, P. A., C. Stroud, A. Akingunola, J. Zhang, S. Ren, P. Cheung, and Q. Zhang, 2021: Vehicle-induced turbulence and atmospheric pollution. Atmos. Chem. Phys., 21, 12291-12316, doi:10.5194/acp-21-12291-2021.
  19. Miller, S. J., M. Gordon, R. M. Staebler, and P. A. Taylor, 2019: A Study of the Spatial Variation of Vehicle-Induced Turbulence on Highways Using Measurements from a Mobile Platform. Bound.-Layer Meteor, 171, 1-29, doi:10.1007/s10546-018-0416-9.
  20. Rao, S. T., L. Sedefian, and U. H. Czapski, 1979: Characteristics of turbulence and dispersion of pollutants near major highways. J. Appl. Meteorol., 18, 283-293, doi:10.1175/1520-0450(1979)018<0283:COTADO>2.0.CO;2.
  21. Song, H. G., and Coauthors, 2023: Estimating vehicular emission factors and vehicle-induced turbulence: Application of an air quality sensor array for continuous multipoint monitoring in a tunnel. Atmos. Pollut. Res., 14, 101799, doi:10.1016/j.apr.2023.101799.
  22. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers., 670 pp doi:10.1007/978-94-009-3027-8.
  23. Wang, Y. J., and K. M. Zhang, 2009: Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT. Environ. Sci. Technol., 43, 7778-7783, doi:10.1021/es9014844.
  24. Wang, Y. J., A. DenBleyker, E. McDonald-Buller, D. Allen, and K. M. Zhang, 2011: Modeling the chemical evolution of nitrogen oxides near roadways. Atmos. Environ., 45, 43-52, doi:10.1016/j.atmosenv.2010.09.050.
  25. Xie, X., Z. Huang, J. Wang, and Z. Xie, 2005: The impact of solar radiation and street layout on pollutant dispersion in street canyon. Build. Environ., 40, 201-212, doi:10.1016/j.buildenv.2004.07.013.
  26. Zhang, K. M., and A. S. Wexler, 2004: Evolution of particle number distribution near roadways-Part I: analysis of aerosol dynamics and its implications for engine emission measurement. Atmos. Environ., 38, 6643-6653, doi:10.1016/j.atmosenv.2004.06.043.