DOI QR코드

DOI QR Code

서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea

  • 한수지 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공) ;
  • 엄준식 (부산대학교 BK21 지구환경시스템 교육연구단, 지구환경시스템학부 대기과학전공)
  • Suji Han (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University) ;
  • Junshik Um (BK21 School of Earth and Environmental Systems, Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University)
  • 투고 : 2023.06.16
  • 심사 : 2023.07.18
  • 발행 : 2023.08.31

초록

The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

키워드

과제정보

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1013278). 이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. 2020R1A6A1A03044834). 이 연구는 기상청 R&D 기상조절과 구름물리의 지원을 받아 수행된 연구임(KMA2018-00224).

참고문헌

  1. Atkinson, R. W., I. C. Mills, H. A. Walton, and H. R. Anderson, 2015: Fine particle components and health - A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol., 25, 208-214, doi:10.1038/jes.2014.63.
  2. Byun, S., and S.-Y. Kim, 2020: Has air pollution concentration increased over the past 17 years in Seoul, South Korea? : The gap between public perception and measurement data. Korean Soc. Atmos. Environ., 36, 240-248, doi:10.5572/KOSAE.2020.36.2.240.
  3. Cha, J. W., and Coauthors, 2019: Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 481-499, doi:10.14191/Atmos.2019.29.4.481.
  4. Chate, D. M., P. S. P. Rao, M. S. Naik, G. A. Momin, P. D. Safai, and K. Ali, 2003: Scavenging of aerosols and their chemical species by rain. Atmos. Environ., 37, 2477-2484, doi:10.1016/S1352-2310(03)00162-6.
  5. Dockery, D. W., and C. A. Pope, 1994: Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health, 15, 107-132, doi:10.1146/annurev.pu.15.050194.000543.
  6. Feng, X., and S. Wang, 2012: Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci., 24, 665-674, doi:10.1016/S1001-0742(11)60807-3.
  7. Gao, B., W. Ouyang, H. Cheng, Y. Xu, C. Lin, and J. Chen, 2019: Interactions between rainfall and fine particulate matter investigated by simultaneous chemical composition measurements in downtown Beijing. Atmos. Environ., 218, 117000, doi:10.1016/j.atmosenv.2019.117000.
  8. Hur, S.-K., C.-H. Ho, J. Kim, H.-R. Oh, and Y.-S. Koo, 2021: Systematic bias of WRF-CMAQ PM10 simulations for Seoul, Korea. Atmos. Environ., 244, 117904, doi:10.1016/j.atmosenv.2020.117904.
  9. Jung, W., K.-H. Chang, J. W. Cha, J. M. Ku, and C. Lee, 2022: Estimation of available days for a cloud seeding experiment in Korea. J. Environ. Sci. Int., 31, 117-129, doi:10.5322/jesi.2022.31.2.117.
  10. Kang, D.-I., S.-H. Kim, J. S. Kim, C. Park, and H. S. Kwon, 2022: Analysis of key management areas by deriving areas vulnerable to particulate matter in Korea. J. Assoc. Korean Photo-Geographers, 32, 57-67, doi:10.35149/jakpg.2022.32.4.005.
  11. KEI, 2016: KEI focus. KEI Vol. 4, 20 pp [Available online at https://library.kei.re.kr/dmme/img/001/018/KEI_%ed%8f%ac%ec%bb%a4%ec%8a%a4_%ed%86%b5%ea%b6%8c17%ed%98%b8.pdf].
  12. Kim, D. Y., M. Choi, and B. Yoon, 2019: Analysis of PM hot-spot emission zone in Seoul metropolitan area. J. Korean Soc. Atmos. Environ., 35, 476-501, doi:10.5572/KOSAE.2019.35.4.476.
  13. Kim, S., K.-H. Hong, H. Jun, Y.-J. Park, M. Park, and Y. Sunwoo, 2014: Effect of precipitation on air pollutant concentration in Seoul, Korea. Asian J. Atmos. Environ., 8, 202-211, doi:10.5572/ajae.2014.8.4.202.
  14. Kim, S., and S. Lee, 2013: The analysis of the weather characteristics by source region of the Asian Dust observed in South Korea. J. Korean Geogr. Soc., 48, 167-183. https://doi.org/10.1353/apr.2013.0000
  15. Kim, S. D., and C. H. Kim, 2008: The Physico-chemical character of aerosol particle in Seoul metropolitan area. Seoul Inst., 9, 23-33.
  16. Kim, S.-U., and K.-Y. Kim, 2020: Physical and chemical mechanisms of the daily-to-seasonal variation of PM10 in Korea. Sci. Total Environ., 712, 136429, doi:10.1016/j.scitotenv.2019.136429.
  17. Kim, Y.-H., D.-Y. Choi, and D.-E Chang, 2011: Characteristics of urban meteorology in Seoul metropolitan area of Korea. Atmosphere, 21, 257-271, doi:10.14191/Atmos.2011.21.3.257.
  18. Kim, Y. P., and G. Lee, 2018: Trend of air quality in Seoul: policy and science. Aerosol Air Qual. Res., 18, 2141-2156, doi:10.4209/aaqr.2018.03.0081.
  19. KMA, 2021: Climatological statistics guide, 87 pp [Available online at https://book.kma.go.kr/viewer/MediaViewer.ax?cid=37367&rid=5&moi=5513].
  20. Lee, J.-J., and C.-H. Kim, 2008: Characteristics of recent occurrence frequency of Asian dust over the source regions - Analysis of the dust occurrences since 2002. Atmosphere, 18, 493-506.
  21. Lee, K., H.-J. Baek, C. H. Cho, and W.-T. Kwon, 2011: The recent (2001~2010) changes on temperature and precipitation related to normals (1971~2000) in Korea. Geogr. J. Korea, 45, 237-248.
  22. Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888-894. https://doi.org/10.1038/ngeo1313
  23. Lim, Y.-K., B.-Y. Kim, K.-H. Chang, J. W. Cha, and Y. H. Lee, 2022: Analysis of PM10 reduction effects with artificial rain enhancement using numerical models. Atmosphere, 32, 341-351, doi:10.14191/Atmos.2022.32.4.341.
  24. Nam, K.-P., D.-G. Lee, and L.-S. Jang, 2019: Analysis of PM2.5 concentration and contribution characteristics in South Korea according to seasonal weather patterns in East Asia: Focusing on the intensive measurement periods in 2015. J. Environ. Impact Assess., 28, 183-200, doi:10.14249/eia.2019.28.3.183.
  25. Olszowski, T., 2016: Changes in PM10 concentration due to large-scale rainfall. Arab. J. Geosci., 9, doi:10.1007/s12517-015-2163-2.
  26. Ouyang, W., B. Guo, G. Cai, Q. Li, S. Han, B. Liu, and X. Liu, 2015: The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Sci. Total Environ., 505, 306-314, doi:10.1016/j.scitotenv.2014.09.062.
  27. Park, H., M. Byun, T. Kim, J.-J. Kim, J.-S. Ryu, M. Yang, and W. Choi, 2020: The washing effect of precipitation on PM10 in the atmosphere and rainwater quality based on rainfall intensity. Korean J. Remote Sens., 36, 1669-1679, doi:10.7780/KJRS.2020.36.6.3.4.
  28. Park, J.-W., and B.-D. Hwang, 2017: Analysis of effects of regional air pollutants (PM10, O3, CO) on respiratory disease. Korean Public Health Res., 43, 53-66, doi: 10.22900/kphr.2017.43.3.005.
  29. Park, R.-S., and G.-M. Han, 2014: Contribution of long-range transported air pollution from China to particulate matter over Korean Peninsula. J. Korean Soc. Hazard Mitig., 14, 26-36.
  30. Park, S., D. Yoon, H. Kong, S. Kang, and C. Lee, 2021: A case study on distribution characteristics of indoor and outdoor particulate matter (PM10, PM2.5) and Black Carbon (BC) by season and time of the day in apartments. J. Environ. Health Sci., 47, 339-355, doi:10.5668/JEHS.2021.47.4.339.
  31. Tan, Z., X. Li, M. Gao, and L. Jiang, 2020: The environmental story during the COVID-19 lockdown: How human activities affect PM2.5 concentration in China? IEEE Geosci. Remote Sens. Lett., 19, 1001005, doi:10.1109/LGRS.2020.3040435.
  32. Wu, Y., Y. Wang, Y. Zhou, X. Liu, Y. Tang, Y. Wang, R. Zhang, and Z. Li, 2022: The wet scavenging of air pollutants through artificial precipitation enhancement: A case study in the Yangtze River Delta. Front. Environ. Sci., 10, 1027902, doi:10.3389/fenvs.2022.1027902.
  33. Yeo, M. J., Y. S. Im, S. S. You, E. M. Jeon, and Y. P. Kim, 2019: Long-term trend of PM2.5 concentration in Seoul. J. Korean Soc. Atmos. Environ., 35, 438-450, doi:10.5572/KOSAE.2019.35.4.438.
  34. Zhou, Y., Y. Yue, Y. Bai, and L. Zhang, 2020: Effects of rainfall on PM2.5 and PM10 in the middle reaches of the Yangtze River. Adv. Meteorol., 2020, 2398146, doi:10.1155/2020/2398146.