DOI QR코드

DOI QR Code

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou (Department of civil Engineering, Faculty of Engineering, Centeral Tehran Branch, Islamic Azad University) ;
  • Farzin Kalantary (Faculty of Civil Engineering, K.N.Toosi University of Technology)
  • Received : 2021.12.20
  • Accepted : 2023.08.04
  • Published : 2023.09.25

Abstract

One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

Keywords

References

  1. Arama, Z.A., Kayabekir, A.E., Bekdas, G., Kim, S. and Geem Z.W., (2021), "The usage of the harmony search algorithm for the optimal design problem of reinforced concrete retaining walls" Appl. Sci., 11(3), 1343. https://doi.org/10.3390/app11031343.
  2. Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999. https://doi.org/10.12989/sem.2015.55.5.979.
  3. Babu, G.L.S. and Singh, V.P. (2011), "Reliability-based load and resistance factors for soil-nail walls", Can. Geotech. J., 48(6), 915- 930. https://doi.org/10.1139/t11-005.
  4. Benayoun, F., Boumezerane, D., Bekkouche, S.R. and Ismail, F. (2021), "Optimization of geometric parameters of soil nailing using response surface methodology", Arabian J. Geosci., 14, 1965. https://doi.org/10.1007/s12517-021-08280-z.
  5. Chakraborty, S. and Rajib Chowdhury, R. (2016), "Assessment of polynomial correlated function expansion for high-fidelity structural reliability analysis", Struct. Saf., 59, 9-19. https://doi.org/10.1016/j.strusafe.2015.10.002.
  6. Der Kiureghian, A.D. and Stefano, M.D. (1991), "Efficient algorithm for second-order reliability analysis", J. Eng. Mech., 117(12), 2904-2923. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904).
  7. Der Kiureghian, A. (2005), Engineering Design Reliability Handbook, CRC Press, Boca Raton, FL, USA.
  8. Ditlevsen, O. (1982), "Model uncertainty in structural reliability", Struct. Saf., 1(1), 73-86. https://doi.org/10.1016/0167-4730(82)90016-9.
  9. Doan, B.Q., Liu, G. and Xu, C. (2018), "An efficient approach for reliability-based design optimization combined sequential optimization with approximate models", Int. J. Comput. Methods, 15(1), 1850018. https://doi.org/10.1142/S0219876218500184.
  10. Du, X. (2005), First-Order and Second-Reliability Methods, in Probabilistic Engineering Design, Missouri S&T, Rolla, ME, USA.
  11. Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering". J. Geotech. Geoenviron. Eng., 126(4), 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).
  12. Fan, C.C. and Luo, J.H. (2008), "Numerical study on the optimum layout of soil-nailed slopes", Comput. Geotech., 35(4), 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002.
  13. Farsani, A.M. and Keshtegar, B. (2015), "Reliability analysis of corroded reinforced concrete beams using enhanced HL-RF method", Civil Eng. Infrastruct. J., 48(2), 297-304. https://doi.org/10.7508/CEIJ.2015.02.006.
  14. FHWA. (2003), Geotechnical engineering circular No. 7 soil nail walls. Federal Highway Administration, Washington, D.C. Report FHWA0-IF-03-017.
  15. Ghareh, S. (2015), "Parametric assessment of soil-nailing retaining structures in cohesive and cohesionless soils" Measurement, 73, 341-351. https://doi.org/10.1016/j.measurement.2015.05.043
  16. Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidiscip. O., 43(4), 519-527. https://doi.org/10.1007/s00158-010-0582-y.
  17. Gong, J.X., Yi, P. and Zhao, N. (2014), "Non-gradient-based algorithm for structural reliability analysis", J. Eng. Mech., 140(6), 04014029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000722.
  18. Goswami, S., Ghosh, S. and Chakraborty, S. (2016), "Reliability analysis of structures by iterative improved response surface method", Struct. Saf., 60, 56-66. https://doi.org/10.1016/j.strusafe.2016.02.002
  19. Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Structures, 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
  20. Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Division, 100(1), 111-121. https://doi.org/10.1061/JMCEA3.0001848.
  21. Hosseini, M., Naeini, S.A.M., Dehghani, A.A. and Khaledian, Y. (2016), "Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods", Soil Tillage Res., 157, 32-42. https://doi.org/10.1016/j.still.2015.11.004.
  22. Huu, V.H., Thoi, T.N., Anh, L.L. and Trang, T.N. (2016), "An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures", Adv. Eng. Softw., 92, 48-56. https://doi.org/10.1016/j.advengsoft.2015.11.001.
  23. Johari, A. and Fooladi, H. (2022), "Simulation of the conditional models of borehole's characteristics for slope reliability assessment", Transport. Geotech., 35, 100778. https://doi.org/10.1016/j.trgeo.2022.100778.
  24. Johari, A. and Golkarfard, H. (2018), "Reliability analysis of unsaturated soil sites based on fundamental period throughout Shiraz, Iran", Soil Dyn. Earthq. Eng., 115, 183-197. https://doi.org/10.1016/j.soildyn.2018.08.012.
  25. Johari, A., Golkarfard, H. and Mesbahi, M. (2022), "The effect of nano-clay stabilizing treatment on the real excavation wall failure: A case study", Scientia Iranica, 29(3), 1006-1023. https://doi.org/10.24200/SCI.2022.56364.4690.
  26. Johari, A., Vali, B. and Golkarfard, H. (2021), "System reliability analysis of ground response based on peak ground acceleration considering soil layers cross-correlation", Soil Dyn. Earthq. Eng., 141, 106475. https://doi.org/10.1016/j.soildyn.2020.106475.
  27. Johari, A., Hajivand A.K. and Binesh, S.M. (2020), "System reliability analysis of soil nail wall using random finite element method", Bull. Eng. Geol. Environ., 79, 2777-2798. https://doi.org/10.1007/s10064-020-01740-y.
  28. Kalantari, A.R. and Johari, A. (2022), "System reliability analysis for seismic stability of the soldier pile wall using the conditional random finite-element method", Int. J. Geomech., 22(10), 04022159. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002534.
  29. Kalantari, A.R., Johari, A., Zandpour, M. and Kalantari, M. (2023), "Effect of spatial variability of soil properties and geostatistical conditional simulation on reliability characteristics and critical slip Surfaces of Soil Slopes", Transport. Geotech., 100933. https://doi.org/10.1016/j.trgeo.2023.100933.
  30. Kalehsar, R.I., Khodaei, M., Dehghan, A.N. and Najafi, N., (2021), "Numerical modeling of effect of surcharge load on the stability of nailed soil slopes", Modeling Earth Syst. Environ., https://doi.org/10.1007/s40808-021-01087-7.
  31. Kaveh, A. and Mahdavi, V.R. (2014), "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005.
  32. Kaveh, A. Massoudi, M.S. and Ghanooni Bagha, M. (2014), "Structural reliability analysis using charged system search algorithm", Iranian J. Sci. Tech T. Civil Eng., 38(2), 439-448. https://doi.org/10.22099/IJSTC.2014.2420.
  33. Keshtegar, B. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Method. Appl. M., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046.
  34. Keshtegar. B. and Hao. P. (2018), "Enhanced single-loop method for efficient reliability-based design optimization with complex constraints", Struct. Multidiscip. O., 57(4), 1731-1747. https://doi.org/10.1007/s00158-017-1842-x.
  35. Le, L.A., Vinh, T.B., Huu, V.H. and Thoi, T.N. (2017), "An efficient coupled numerical method for reliability-based design optimization of steel frames", J. Constr. Steel Res., 138, 389-400. https://doi.org/10.1016/j.jcsr.2017.08.002.
  36. Lee, J.O., Yang, Y.S. and Ruy, W.S. (2002), "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization", Comput. Struct., 80(3-4), 257-269. https://doi.org/10.1016/S0045-7949(02)00006-8.
  37. Lehky. D., Slowik. O. and Novak. D. (2018), "Reliability-based design: Artificial neural networks and double-loop reliability-based optimization approaches", Adv. Eng. Softw., 117, 123-135. https://doi.org/10.1016/j.advengsoft.2017.06.013.
  38. Liu, P.L. and Der Kiureghian, A. (1991), "Optimization algorithms for structural reliability", Struct. Saf., 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7.
  39. Liu, Q. and Paavola, J. (2015), "Drift reliability-based optimization method of frames subjected to stochastic earthquake ground motion", Appl. Math. Model., 39, 982-999. https://doi.org/10.1016/j.apm.2014.07.021.
  40. Makhduomi, H., Keshtegar, B. and Shahraki, M. (2017), "A comparative study of first-order reliability method-based steepest descent search directions for reliability analysis of steel structures", Adv. Civil Eng., 8643801. https://doi.org/10.1155/2017/8643801.
  41. Manahiloh, K.N., Nejad, M.M. and Momeni, M.S., (2015), "Optimization of design parameters and cost of geosynthetic-reinforced earth walls using harmony search algorithm", Int. J. Geosynth. Ground Eng., 1, 15. https://doi.org/10.1007/s40891-015-0017-3.
  42. Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first-order reliability analysis", Struct. Multidiscip. Optim., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z.
  43. Pak, A., Maleki, J., Aghakhani, N. and Yousefi, M., (2019), "Numerical investigation of stability of deep excavations supported by soil-nailing method", Geomech. Geoeng., 16(6), 434-451. https://doi.org/10.1080/17486025.2019.1680878.
  44. Patra, C.R. and Basudhar, P.K. (2005), "Optimum design of nailed soil slopes", Geotech. Geol. Eng., 23, 273-296. https://doi.org/10.1007/s10706-004-2146-7.
  45. Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9.
  46. Rashki, M., Miri, M. and Moghaddam, M.A. (2012), "A new efficient simulation method to approximate the probability of failure and most probable point", Struct. Saf., 39, 22-29. https://doi.org/10.1016/j.strusafe.2012.06.003.
  47. Rawat, S. and Gupta, A.K., (2016), "Analysis of a nailed soil slope using limit equilibrium and finite element methods", Int. J. Geosynth. Ground Eng., 2, 34. https://doi.org/10.1007/s40891-016-0076-0.
  48. Santosh, T., Saraf, R., Ghosh, A. and Kushwaha, H. (2006), "Optimum step length selection rule in modified HL-RF method for structural reliability", Int. J. Pressure Vessels Piping, 83(10), 742-748. https://doi.org/10.1016/j.ijpvp.2006.07.004
  49. Seo, H.J., Lee, I. and Lee, S.W. (2014), "Optimization of soil nailing design considering three failure modes" KSCE J. Civil Eng. Geotech. Eng., 18(2), 488-496. https://doi.org/10.1007/s12205-014-0552-9.
  50. Shamsaddinlou, A., Shirgir, S., Hadidi, A. and Azar, B.F. (2023), "An efficient reliability-based design of TMD & MTMD in nonlinear structures under uncertainty", Structures, 51, 258-274. https://doi.org/10.1016/j.istruc.2023.03.053.
  51. Sharma, A. and Ramkrishnan, R. (2020), "Parametric optimization and multi-regression analysis for soil nailing using numerical approaches", Geotech. Geol. Eng., 38, 3505-3523. https://doi.org/10.1007/s10706-020-01230-8.
  52. Shirgir, S., Shamsaddinlou, A., Zare, R.N., Zehtabiyan, S. and Bonab, M.H. (2023), "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition", Reliab. Eng. Syst. Safe., 232, 109077. https://doi.org/10.1016/j.ress.2022.109077.
  53. Tu. J. and Choi. K.K. and Park, Y.H. (1999), "A new study on reliability based design optimization", ASME J. Mech.Design, 121(4), 557-564. https://doi.org/10.1115/1.2829499.
  54. Vazirizade, S.M., Nozhati, S. and Zadeh, M.A. (2017), "Seismic reliability assessment of structures using artificial neural network", J. Build. Eng., 11, 230-235. https://doi.org/10.1016/j.jobe.2017.04.001.
  55. Villalobos, S.A. and Villalobos, F.A. (2021), "Effect of nail spacing on the global stability of soil nailed walls using limit equilibrium and finite element methods", Transport. Geotech., 26, 100454. https://doi.org/10.1016/j.trgeo.2020.100454.
  56. Zhao, Q., Chen, X., Ma, Z. and Lin, Y. (2016), "A comparison of deterministic, reliability-based topology optimization under uncertainties", Acta Mech. Solida Sinica, 29(1), 31-45. https://doi.org/10.1016/S0894-9166(16)60005-8.