DOI QR코드

DOI QR Code

Intraoperative Nerve Monitoring during Minimally Invasive Esophagectomy and 3-Field Lymphadenectomy: Safety, Efficacy, and Feasibility

  • Srinivas Kodaganur Gopinath (Thoracic Surgical Services, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute) ;
  • Sabita Jiwnani (Thoracic Surgical Services, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute) ;
  • Parthiban Valiyuthan (Department of Neurophysiology, Tata Memorial Hospital, Homi Bhabha National Institute) ;
  • Swapnil Parab (Department of Anesthesiology, Tata Memorial Hospital, Homi Bhabha National Institute) ;
  • Devayani Niyogi (Thoracic Surgical Services, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute) ;
  • Virendrakumar Tiwari (Thoracic Surgical Services, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute) ;
  • C. S. Pramesh (Thoracic Surgical Services, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute)
  • Received : 2023.04.28
  • Accepted : 2023.07.06
  • Published : 2023.09.05

Abstract

Background: The objective of this study was to demonstrate the safety, efficacy, and feasibility of intraoperative monitoring of the recurrent laryngeal nerves during thoracoscopic and robotic 3-field esophagectomy. Methods: This retrospective analysis details our initial experience using intraoperative nerve monitoring (IONM) during minimally invasive 3-field esophagectomy. Data were obtained from a prospectively maintained database and electronic medical records. The study included all patients who underwent minimally invasive (video-assisted thoracic surgery/robotic) transthoracic esophagectomy with neck anastomosis. The patients were divided into those who underwent IONM during the study period and a historical cohort who underwent 3-field esophagectomy without IONM at the same institution. Appropriate statistical tests were used to compare the 2 groups. Results: Twenty-four patients underwent nerve monitoring during minimally invasive 3-field esophagectomy. Of these, 15 patients underwent thoraco-laparoscopic operation, while 9 received a robot-assisted procedure. In the immediate postoperative period, 8 of 24 patients (33.3%) experienced vocal cord paralysis. Relative to a historical cohort from the same institution, who were treated with surgery without nerve monitoring in the preceding 5 years, a 26% reduction was observed in the nerve paralysis rate (p=0.08). On follow-up, 6 of the 8 patients with vocal cord paralysis reported a return to normal vocal function. Additionally, patients who underwent IONM exhibited a higher nodal yield and a decreased frequency of tracheostomy and bronchoscopy. Conclusion: The use of IONM during minimally invasive 3-field esophagectomy is safe and feasible. This technique has the potential to decrease the incidence of recurrent nerve palsy and increase nodal yield.

Keywords

References

  1. Tachimori Y, Ozawa S, Numasaki H, et al. Comprehensive registry of esophageal cancer in Japan, 2012. Esophagus 2019;16:221-45. https://doi.org/10.1007/s10388-019-00674-z
  2. Nishihira T, Hirayama K, Mori S. A prospective randomized trial of extended cervical and superior mediastinal lymphadenectomy for carcinoma of the thoracic esophagus. Am J Surg 1998;175:47-51. https://doi.org/10.1016/s0002-9610(97)00227-4
  3. Isono K, Sato H, Nakayama K. Results of a nationwide study on the three-field lymph node dissection of esophageal cancer. Oncology 1991;48:411-20. https://doi.org/10.1159/000226971
  4. Tsurumaru M, Kajiyama Y, Udagawa H, Akiyama H. Outcomes of extended lymph node dissection for squamous cell carcinoma of the thoracic esophagus. Ann Thorac Cardiovasc Surg 2001;7:325-9.
  5. Altorki N, Kent M, Ferrara C, Port J. Three-field lymph node dissection for squamous cell and adenocarcinoma of the esophagus. Ann Surg 2002;236:177-83. https://doi.org/10.1097/00000658-200208000-00005
  6. Lerut T, Nafteux P, Moons J, et al. Three-field lymphadenectomy for carcinoma of the esophagus and gastroesophageal junction in 174 R0 resections: impact on staging, disease-free survival, and outcome: a plea for adaptation of TNM classification in upper-half esophageal carcinoma. Ann Surg 2004;240:962-74. https://doi.org/10.1097/01.sla.0000145925.70409.d7
  7. Gockel I, Kneist W, Keilmann A, Junginger T. Recurrent laryngeal nerve paralysis (RLNP) following esophagectomy for carcinoma. Eur J Surg Oncol 2005;31:277-81. https://doi.org/10.1016/j.ejso.2004.10.007
  8. Cirocchi R, Arezzo A, D'Andrea V, et al. Intraoperative neuromonitoring versus visual nerve identification for prevention of recurrent laryngeal nerve injury in adults undergoing thyroid surgery. Cochrane Database Syst Rev 2019;1:CD012483. https://doi.org/10.1002/14651858.CD012483.pub2
  9. Takeda S, Iida M, Kanekiyo S, et al. Efficacy of intraoperative recurrent laryngeal neuromonitoring during surgery for esophageal cancer. Ann Gastroenterol Surg 2020;5:83-92. https://doi.org/10.1002/ags3.12394
  10. Yuda M, Nishikawa K, Takahashi K, et al. A strategy for using intraoperative nerve monitoring during esophagectomy to prevent recurrent laryngeal nerve palsy. Anticancer Res 2018;38:1563-7. https://doi.org/10.21873/anticanres.12385
  11. Mariette C, Markar SR, Dabakuyo-Yonli TS, et al. Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med 2019;380:152-62. https://doi.org/10.1056/NEJMoa1805101
  12. Straatman J, van der Wielen N, Cuesta MA, et al. Minimally invasive versus open esophageal resection: three-year follow-up of the previously reported randomized controlled trial: the TIME trial. Ann Surg 2017;266:232-6. https://doi.org/10.1097/SLA.0000000000002171
  13. de Groot EM, van der Horst S, Kingma BF, et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open esophagectomy: long-term follow-up of a randomized clinical trial. Dis Esophagus 2020;33(Supplement_2):doaa079. https://doi.org/10.1093/dote/doaa079
  14. Kernstine KH. The first series of completely robotic esophagectomies with three-field lymphadenectomy: initial experience. Surg Endosc 2008;22:2102. https://doi.org/10.1007/s00464-008-9959-z
  15. Palanivelu C, Prakash A, Senthilkumar R, et al. Minimally invasive esophagectomy: thoracoscopic mobilization of the esophagus and mediastinal lymphadenectomy in prone position: experience of 130 patients. J Am Coll Surg 2006;203:7-16. https://doi.org/10.1016/j.jamcollsurg.2006.03.016
  16. Scholtemeijer MG, Seesing MF, Brenkman HJ, Janssen LM, van Hillegersberg R, Ruurda JP. Recurrent laryngeal nerve injury after esophagectomy for esophageal cancer: incidence, management, and impact on short- and long-term outcomes. J Thorac Dis 2017;9(Suppl 8):S868-78. https://doi.org/10.21037/jtd.2017.06.92
  17. Kim DJ, Park SY, Lee S, Kim HI, Hyung WJ. Feasibility of a robot-assisted thoracoscopic lymphadenectomy along the recurrent laryngeal nerves in radical esophagectomy for esophageal squamous carcinoma. Surg Endosc 2014;28:1866-73. https://doi.org/10.1007/s00464-013-3406-5
  18. Takeuchi H, Miyata H, Ozawa S, et al. Comparison of short-term outcomes between open and minimally invasive esophagectomy for esophageal cancer using a nationwide database in Japan. Ann Surg Oncol 2017;24:1821-7. https://doi.org/10.1245/s10434-017-5808-4
  19. Li B, Zhang Y, Miao L, et al. Esophagectomy with three-field versus two-field lymphadenectomy for middle and lower thoracic esophageal cancer: long-term outcomes of a randomized clinical trial. J Thorac Oncol 2021;16:310-7. https://doi.org/10.1016/j.jtho.2020.10.157
  20. Sato Y, Kosugi S, Aizawa N, et al. Risk factors and clinical outcomes of recurrent laryngeal nerve paralysis after esophagectomy for thoracic esophageal carcinoma. World J Surg 2016;40:129-36. https://doi.org/10.1007/s00268-015-3261-8
  21. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Little Brown & Co.; 1954.
  22. Hemmerling TM, Schmidt J, Jacobi KE, Klein P. Intraoperative monitoring of the recurrent laryngeal nerve during single-lung ventilation in esophagectomy. Anesth Analg 2001;92:662-4. https://doi.org/10.1097/00000539-200103000-00021
  23. Zhong D, Zhou Y, Li Y, et al. Intraoperative recurrent laryngeal nerve monitoring: a useful method for patients with esophageal cancer. Dis Esophagus 2014;27:444-51. https://doi.org/10.1111/j.1442-2050.2012.01414.x
  24. Hikage M, Kamei T, Nakano T, et al. Impact of routine recurrent laryngeal nerve monitoring in prone esophagectomy with mediastinal lymph node dissection. Surg Endosc 2017;31:2986-96. https://doi.org/10.1007/s00464-016-5317-8
  25. Kobayashi H, Kondo M, Mizumoto M, Hashida H, Kaihara S, Hosotani R. Technique and surgical outcomes of mesenterization and intra-operative neural monitoring to reduce recurrent laryngeal nerve paralysis after thoracoscopic esophagectomy: a cohort study. Int J Surg 2018;56:301-6. https://doi.org/10.1016/j.ijsu.2018.05.738
  26. Fujimoto D, Taniguchi K, Kobayashi H. Intraoperative neuromonitoring during prone thoracoscopic esophagectomy for esophageal cancer reduces the incidence of recurrent laryngeal nerve palsy: a single-center study. Updates Surg 2021;73:587-95. https://doi.org/10.1007/s13304-020-00967-4
  27. Wang X, Guo H, Hu Q, Ying Y, Chen B. Efficacy of intraoperative recurrent laryngeal nerve monitoring during thoracoscopic esophagectomy for esophageal cancer: a systematic review and meta-analysis. Front Surg 2021;8:773579. https://doi.org/10.3389/fsurg.2021.773579
  28. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 2002;19:430-43. https://doi.org/10.1097/00004691-200210000-00006
  29. Yamashita K, Miyata H, Kanemura T, et al. Successful esophageal carcinoma resection with intraoperative neuromonitoring in a patient with non-recurrent inferior laryngeal nerve. Esophagus 2016;13:97-103. https://doi.org/10.1007/s10388-015-0493-5
  30. Kitagawa H, Iwabu J, Yokota K, Namikawa T, Hanazaki K. Intraoperative neurological monitoring during neck dissection for esophageal cancer with aberrant subclavian artery. Anticancer Res 2019;39:3203-5. https://doi.org/10.21873/anticanres.13459