DOI QR코드

DOI QR Code

Stabilization of cement-soil utilizing microbially induced carbonate precipitation

  • Shuang Li (College of Civil Engineering, Fuzhou University) ;
  • Ming Huang (College of Civil Engineering, Fuzhou University) ;
  • Mingjuan Cui (College of Civil Engineering, Fuzhou University) ;
  • Peng Lin (Department of Civil and Environmental Engineering, Shantou University) ;
  • Liudi Xu (Department of Civil and Environmental Engineering, Shantou University) ;
  • Kai Xu (College of Civil Engineering, Fuzhou University)
  • Received : 2022.12.01
  • Accepted : 2023.09.11
  • Published : 2023.10.10

Abstract

Soft soil ground is a crucial factor limiting the development of the construction of transportation infrastructure in coastal areas. Soft soil is characterized by low strength, low permeability and high compressibility. However, the ordinary treatment method uses Portland cement to solidify the soft soil, which has low early strength and requires a long curing time. Microbially induced carbonate precipitation (MICP) is an emerging method to address geo-environmental problems associated with geotechnical materials. In this study, a method of bio-cementitious mortars consisting of MICP and cement was proposed to stabilize the soft soil. A series of laboratory tests were conducted on MICP-treated and cement-MICP-treated (C-MICP-treated) soft soils to improve mechanical properties. Microscale observations were also undertaken to reveal the underlying mechanism of cement-soil treated by MICP. The results showed that cohesion and internal friction angles of MICP-treated soft soil were greater than those of remolded soft soil. The UCS, elastic modulus and toughness of C-MICP-treated soft soil with high moisture content (50%, 60%, 70%, 80%) were improved compared to traditional cement-soil. A remarkable difference was observed that the MICP process mainly played a role in the early curing stage (i.e., within 14 days) while cement hydration continued during the whole process. Micro-characterization revealed that the calcium carbonate filling the pores enhanced the soft soil.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (Grant nos. 41972276, 52108307, 52378392), "Foal Eagle Program" Youth Top-notch Talent Project of Fujian Province (Grant no. 00387088), Natural Science Foundation of Fujian Province (Grant no. 2020J06013), and Qishan Scholar Project of Fuzhou University (Grant no. XRC22015, GXRC21047).

References

  1. Achal, V. and Kawasaki, S. (2016), "Biogrout: a novel binding material for soil improvement and concrete repair", Front. Microbiol., 7, 314. https://doi.org/10.3389/fmicb.2016.00314.
  2. Ahmed, A. (2015), "Compressive strength and microstructure of soft clay soil stabilized with recycled basanite", Appl. Clay Sci., 104, 27-35. https://doi.org/10.1016/j.clay.2014.11.031.
  3. Anagnostopoulos, C.A. (2015), "Strength properties of an epoxy resin and cement-stabilized silty clay soil", Appl. Clay Sci., 114, 517-529. https://doi.org/10.1016/j.clay.2015.07.007.
  4. Arpajirakul, S.; Pungrasmi, W. and Likitlersuang, S. (2021), "Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement", Constr. Build. Mater., 282, 122722. https://doi.org/10.1016/j.conbuildmat.2021.122722.
  5. Benhelal, E.; Zahedi, G.; Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Cleaner Product., 51(15), 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
  6. Bian, X.; Zeng, L., Li, X., Shi, A., Zhou, S. and Li, F. (2021), "Fabric changes induced by super-absorbent polymer on cement-lime stabilized excavated clayey soil", J. Rock Mech. Geotech. Eng., 13(5), 1124-1135. https://doi.org/10.1016/j.jrmge.2021.03.006.
  7. Bushlaibi, A.H.. and Alshamsi, A.M. (2002), "Efficiency of curing on partially exposed high-strength concrete in hot climate", Cement Concrete Res., 32(6), 949-953. https://doi.org/10.1016/S0008-8846(02)00735-4.
  8. Chen, M. (2021), "Evaluating mechanical strength of peat soil treated by fiber incorporated bio-cementation", Geomate, 20(78). https://doi.org/10.21660/2021.78.Gx162. 
  9. Cheng, L. and Shahin, M.A. (2015), "Assessment of different treatment methods by microbial-induced calcite precipitation for clayey soil improvement", Proceedings of the 68th Canadian Geotechnical Conference, Quebec, QC, Canada.
  10. Cheng, L., Shahin, M.A. and Chu, J. (2019), "Soil bio-cementation using a new one-phase low-pH injection method", Acta Geotech., 14(3), 615-626. https://doi.org/10.1007/s11440-018-0738-2.
  11. Cui, M.J.; Lai, H.J., Hoang, T. and Chu, J. (2021a), "One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement", Acta Geotech., 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2.
  12. Cui, M.J., Zheng, J.J., Chu, J., Wu, C.C. and Lai, H.J. (2021b), "Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand", Acta Geotech., 16(5), 1377-1389. https://doi.org/10.1007/s11440-020-01099-0.
  13. Cui, M.J., Zheng, J.J., Dahal, B.K., Huang, Z.F. and Wu, C.C. (2021c), "Effect of waste rubber particles on the shear behaviour of bio-cemented calcareous sand", Acta Geotech., 16(5), 1429-1439. https://doi.org/10.1007/s11440-021-01176-y.
  14. Fan, N., Nian, T.K., Guo, X.S., Jiao, H.B. and Lu, S. (2020), "Piecewise strength model for three types of ultra-soft fine-grained soils", Soils Found., 60(4), 778-790. https://doi.org/10.1016/j.sandf.2020.04.010.
  15. Gao, Y., Zhang, H., Tang, S. and Liu, H. (2013), "Study on early autogenous shrinkage and crack resistance of fly ash high-strength lightweight aggregate concrete", Mag. Concrete Res., 65(15), 906-913. https://doi.org/10.1680/macr.13.00004.
  16. Ghadir, P. and Ranjbar, N. (2018), "Clayey soil stabilization using geopolymer and Portland cement", Constr. Build. Mater., 188, 361-371. https://doi.org/10.1016/j.conbuildmat.2018.07.207.
  17. Glover, P.W., Zadjali, I.I. and Frew, K.A. (2006), 'Permeability prediction from MICP and NMR data using an electrokinetic approach", Geophys., 71(4), 49-60. https://doi.org/10.1190/1.2216930.
  18. Gowthaman, S., Nakashima, K. and Kawasaki, S. (2022), "Effect of wetting and drying cycles on the durability of bio-cemented soil of expressway slope", Int. J. Environ. Sci. Technol., 19(4), 2309-2322. https://doi.org/10.1007/s13762-021-03306-1.
  19. Gowthaman, S., Chen, M., Nakashima, K. and Kawasaki, S. (2021), "Effect of scallop powder addition on MICP treatment of amorphous peat", Front. Environ. Sci., 9, 690376. https://doi.org/10.3389/fenvs.2021.690376.
  20. Hassan, A.; Arif, M. and Shariq, M. (2020), "A review of properties and behaviour of reinforced geopolymer concrete structural elements- A clean technology option for sustainable development", J. Cleaner Product., 245, 118762. https://doi.org/10.1016/j.jclepro.2019.118762.
  21. Huang, M., Xu, K., Xu, C., Jin, G. and Guo, S. (2021), Micromechanical properties of biocemented shale soils analyzed using nanoindentation test", J. Geotech. Geoenviron. Eng., 147(12), 04021157. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002653.
  22. Imran, M.A., Nakashima, K., Evelpidou, N. and Kawasaki, S. (2022), "Durability improvement of biocemented sand by fiber-reinforced MICP for coastal erosion protection", Materials, 15(7), 2389. https://doi.org/10.3390/ma15072389.
  23. Islam, M.T., Chittoori, B.C.S. and Burbank, M. (2020), "Evaluating the applicability of biostimulated calcium carbonate precipitation to stabilize clayey soils", J. Mater. Civ. Eng., 32(3), 04019369. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003036.
  24. Ivanov, V., Stabnikov, V., Stabnikova, O. and Kawasaki, S. (2019), "Environmental safety and biosafety in construction biotechnology", World J. Microbiol. Biotechnol., 35(2), 26. https://doi.org/10.1007/s11274-019-2598-9.
  25. Jiang, N.J., Wang, Y.J., Chu, J. and Kawasaki, S. (2022), "Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications", Soil Use and Manage., 38(1), 68-93. https://doi.org/10.1111/sum.12736.
  26. Jiang, W., Zhang, C., Xiao, H., Luo, S., Li, Z. and Li, X. (2021), "Preliminary study on microbially modified expansive soil of embankment", Geomech. Eng., 26(3), 301-310. https://doi.org/10.12989/gae.2021.26.3.301.
  27. Jin, G.; Xu, K., Xu, C., Huang, M., Abdulwahab Qasem, R.G., Guo, S. and Liu, S. (2020), "Cementation of shale soils by MICP technology and its damage characteristics due to freeze-thaw weathering processes", J. Cold Reg. Eng., 34(4), 04020023. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000229.
  28. Jonah Abbey, S. (2019), "Effect of organic matter on swell and undrained shear strength of treated soils", JCCEE, 4(2), 48. https://doi.org/10.11648/j.jccee.20190402.12.
  29. Kannan, K.; Bindu, J. and Vinod, P. (2020), "Engineering behaviour of MICP treated marine clays", Mar. Georesour. Geotec., 38(7), 761-769. https://doi.org/10.1080/1064119X.2020.1728791.
  30. Kirkland, C.M., Thane, A., Hiebert, R., Hyatt, R., Kirksey, J., Cunningham, A.B., Gerlach, R., Spangler, L. and Phillips, A.J. (2020), "Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (MICP): A field demonstration", J. Petroleum Sci. Eng., 190, 107060. https://doi.org/10.1016/j.petrol.2020.107060.
  31. Lang, L., Chen, B. and Chen, B. (2021), "Strength evolutions of varying water content-dredged sludge stabilized with alkali-activated ground granulated blast-furnace slag", Constr. Build. Mater., 275, 122111. https://doi.org/10.1016/j.conbuildmat.2020.122111.
  32. Lee, Y.S. and Park, W. (2018), "Current challenges and future directions for bacterial self-healing concrete", Appl. Microbiology Biotechnol., 102(7), 3059-3070. https://doi.org/10.1007/s00253-018-8830-y.
  33. Li, B. (2015), Geotechnical properties of biocement treated sand and clay, Ph.D. Dissertation. Nanyang Technological University, Singapore.
  34. Li, S., Huang, M., Cui, M., Jiang, Q. and Xu, K. (2023), "Thermal conductivity enhancement of backfill material and soil using enzyme-induced carbonate precipitation (EICP)", Acta Geotech., 18(8), 1141-1156. https://doi.org/10.1007/s11440-023-02029-6.
  35. Li, S., Liu, D., Garg, A., Lin, P. and Huang, M. (2022), "Mechanical properties of cement soil improved using microbial-induced calcite precipitation", Arab J Geosci., 15(11), 1053. https://doi.org/10.1007/s12517-022-09752-6.
  36. Li, S.; Wang, Y.N., Liu, D., Garg, A. and Lin, P. (2020), "Exploring an environmentally friendly microbially induced calcite precipitation (MICP) technology for improving engineering properties of cement-stabilized granite residual soil", NEPT, 19(3), 1211-1218. https://doi.org/10.46488/NEPT.2020.v19i03.035.
  37. Lin, H., Suleiman, M.T. and Brown, D.G. (2020), "Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP)", Soils Found., 60(4), 944-961. https://doi.org/10.1016/j.sandf.2020.07.003.
  38. Lo, S.R. and Wardani, S.P.R. (2002), "Strength and dilatancy of a silt stabilized by a cement and fly ash mixture", Can. Geotech. J., 39(1), 77-89. https://doi.org/10.1139/t01-062.
  39. Ma, G., He, X., Xiao, Y., Chu, J., Cheng, L. and Liu, H. (2022), "Influence of bacterial suspension type on the strength of biocemented sand", Can. Geotech. J., 59(11), 2014-2021. https://doi.org/10.1139/cgj-2021-0295.
  40. Montoya, B.M. and DeJong, J.T. (2015), "Stress-strain behavior of sands cemented by microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 141(6), 4015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
  41. Mortensen, B.M. and DeJong, J.T. (2011), "Strength and stiffness of MICP treated sand subjected to various stress paths", Adv. Geotech. Eng., 4012-4020.
  42. Mosallanejad, A., Taghvaei, H., Mirsoleimani-azizi, S., Mohammad, A. and Reza Rahimpour, M. (2017), "Plasma upgrading of 4methylanisole: A novel approach for hydrodeoxygenation of bio oil without using a hydrogen source", Chem. Eng. Res. Design, 121, 113-124. https://doi.org/10.1016/j.cherd.2017.03.011.
  43. Omoregie, A.I., Palombo, E.A. and Nissom, P.M. (2021), "Bioprecipitation of calcium carbonate mediated by ureolysis: A review", Environ. Eng. Res., 26(6), 200379-0. https://doi.org/10.4491/eer.2020.379.
  44. Rajasekar, A., Moy, C.K.S. and Wilkinson, S. (2017), "MICP and advances towards eco-friendly and economical applications", IOP Conf. Ser.: Earth Environ. Sci., 78, 12016. https://doi.org/10.1088/1755-1315/78/1/012016.
  45. Shen, D., Shi, X., Zhu, S., Duan, S/ and Zhang, J. (2016), "Relationship between tensile Young's modulus and strength of fly ash high strength concrete at early age", Constr. Build. Mater., 123, 317-326. https://doi.org/10.1016/j.conbuildmat.2016.06.145.
  46. Sun, X.; Miao, L., Wang, H., Chen, R. and Guo, X. (2021), "Improvement of characteristics and freeze-thaw durability of solidified loess based on microbially induced carbonate precipitation", Bull. Eng. Geol. Environ., 80(6), 4957-4966. https://doi.org/10.1007/s10064-021-02241-2.
  47. Thomas O'Donnell, S. and Kavazanjian Jr, E. (2015), "Stiffness and dilatancy improvements in uncemented sands treated through MICP", J. Geotech. Geoenviron. Eng., 141(11), 2815004.
  48. Tian, Z.; Tang, X., Li, J., Xiu, Z. and Xue, Z. (2021), "Improving settlement and reinforcement uniformity of marine clay in electro-osmotic consolidation using microbially induced carbonate precipitation", Bull. Eng. Geol. Environ., 80(8), 6457-6471. https://doi.org/10.1007/s10064-021-02305-3.
  49. Tremblay, H.; Duchesne, J.; Locat, J. and Leroueil, S. (2002), "Influence of the nature of organic compounds on fine soil stabilization with cement", Can. Geotech. J., 39(3), 535-546. https://doi.org/10.1139/t02-002.
  50. Wang, D., Xiao, J., He, F. and Zhuo, Y. (2019), "Durability evolution and associated micro-mechanisms of carbonated reactive MgO-fly ash solidified sludge from East Lake, China", Constr. Build. Mater., 208, 1-12. https://doi.org/10.1016/j.conbuildmat.2019.02.173.
  51. Wang, L., Chu, J., Wu, S. and Wang, H. (2021), "Stress-dilatancy behavior of cemented sand: comparison between bonding provided by cement and biocement", Acta Geotech., 16(5), 1441-1456. https://doi.org/10.1007/s11440-021-01146-4.
  52. Wang, Y. and Aladejare, A.E. (2016), "Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock", Int. J. Rock Mech. Min. Sci., 85, 10-19. https://doi.org/10.1016/j.ijrmms.2016.02.010.
  53. Wang, Y., Jiang, R., Wang, G. and Jiao, M. (2023), "Study on mechanical properties of Yellow River silt solidified by MICP technology", Geomech. Eng., 32(3), 347.
  54. Wang, Z., Zhang, N., Cai, G., Jin Y., Ding, N. and Shen, D. (2017), "Review of ground improvement using microbial induced carbonate precipitation (MICP)", Mar. Georesour. Geotec., 35(8), 1135-1146. https://doi.org/10.1080/1064119X.2017.1297877.
  55. Wang Z., Zhang N., Ding J., Li. Q. and Xu, J. (2020), "Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction", Int. J. Heat Mass Transfer., 147, 118899. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899.
  56. Whiffin, V.S. (2004), Microbial CaCO3 precipitation for the production of biocement, Murdoch University, Australia.
  57. Xiao, J.Z.; Wei, Y.Q.; Cai, H., Wang, Z.W., Yang, T., Wang, Q.H., Wu, S.F. (2020), "Microbial-induced carbonate precipitation for strengthening soft clay", Adv. Mater. Sci. Eng., 2020, 1-11. https://doi.org/10.1155/2020/8140724.
  58. Xiao, Y., Zhao, C., Sun, Y., Wang, S., Wu, H., Chen, H. and Liu, H. (2021), "Compression behavior of MICP-treated sand with various gradations", Acta Geotech., 16(5), 1391-1400. https://doi.org/10.1007/s11440-020-01116-2.
  59. Xiao, Y., Tang, Y., Ma, G., McCartney, J.S. and Chu, J. (2021), "Thermal conductivity of biocemented graded sands", J. Geotech. Geoenviron. Eng., 147. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002621.
  60. Yang, Y.; Chu, J., Liu, H. and Cheng, L. (2022), "Improvement of uniformity of biocemented sand column using CH3COOH-buffered one-phase-low-pH injection method", Acta Geotech., 18(1), 413-428. https://doi.org/10.1007/s11440-022-01576-8.
  61. Yao, D., Wu, J., Wang, G., Wang, P., Zheng, J.J., Yan, J., Xu, L. and Yan, Y. (2021), "Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): mechanical property and underlying mechanism", Acta Geotech., 16(5), 1401-1416. https://doi.org/10.1007/s11440-020-01112-6.
  62. Yao, J.L.; Guan, R., Yuan, J.B. and Liu, B. (2017), "Characterizing vibration responses of cement pavement slabs atop different interlayers to moving vehicle load", J. Test. Eval., 45(1), 120-130. https://doi.org/10.1520/JTE20160046
  63. Yao, K., Wang, W., Li, N., Zhang, C. and Wang, L. (2019), "Investigation on strength and microstructure characteristics of nano-MgO admixed with cemented soft soil", Constr. Build. Mater., 206, 160-168. https://doi.org/10.1016/j.conbuildmat.2019.01.221.
  64. Yue, J., Zhao, L.,; Zhang, B., Kong, Q., Wang, S. and Wang, H. (2021), "Effect of glutinous rice slurry on the reinforcement of silt in the Yellow River basin by microbially induced carbonate precipitation (MICP): Mechanical property and microcosmic structure", Adv. Mater. Sci. Eng., 2021, 1-23. https://doi.org/10.1155/2021/5539854.
  65. Zamani, A. and Montoya, B.M. (2017), "Shearing and hydraulic behavior of MICP treated silty sand", (Eds., Thomas L. Brandon and Richard J. Valentine), Geotechnical Frontiers 2017. Geotechnical Frontiers 2017. Orlando, Florida, March 12-15, 2017. Reston, VA: American Society of Civil Engineers, 290-299.
  66. Zeng, L.L., Bian, X., Zhao, L., Wang, Y.J. and Hong, Z.S. (2021), "Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China", Geomech. Energ. Environ., 25, 100195. https://doi.org/10.1016/j.gete.2020.100195.
  67. Zhao, X., Wang, Q., Gao, Y., Yang, T., He, L. and Lu, X. (2019), "Indoor rheological test and creep model analysis of soft soil in qingyi river region in wuhu anhui", IOP Conf. Ser.: Earth Environ. Sci., 330(3), 32007. https://doi.org/10.1088/1755-1315/330/3/032007.