DOI QR코드

DOI QR Code

Experimental and model study on the mixing effect of injection method in UV/H2O2 process

  • Heekyong Oh (Department of Environmental Engineering, University of Seoul) ;
  • Pyonghwa Jang (R&D Center, OCI) ;
  • Jinseok Hyung (Department of Environmental Engineering, University of Seoul) ;
  • Jayong Koo (Department of Environmental Engineering, University of Seoul) ;
  • SungKyu Maeng (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2023.05.31
  • Accepted : 2023.08.23
  • Published : 2023.05.25

Abstract

The appropriate injection of H2O2 is essential to produce hydroxyl radicals (OH·) by mixing H2O2 quickly and exposing the resulting H2O2 solution to UV irradiation. This study focused on evaluating mixing device of H2O2 as a design factor of UV/H2O2 AOP pilot plant using a surface water. The experimental investigation involved both experimental and model-based analyses to evaluate the mixing effect of different devices available for the H2O2 injection of a tubular hollow pipe, elliptical type of inline mixer, and nozzle-type injection mixer. Computational fluid dynamics analysis was employed to model and simulate the mixing devices. The results showed that the elliptical type of inline mixer showed the highest uniformity of 95%, followed by the nozzle mixer with 83%, and the hollow pipe with only 18%, after passing through each mixing device. These results indicated that the elliptical type of inline mixer was the most effective in mixing H2O2 in a bulk. Regarding the pressure drops between the inlet and outlet of pipe, the elliptical-type inline mixer exhibited the highest pressure drop of 15.8 kPa, which was unfavorable for operation. On the other hand, the nozzle mixer and hollow pipe showed similar pressure drops of 0.4 kPa and 0.3 kPa, respectively. Experimental study showed that the elliptical type of inline and nozzle-type injection mixers worked well for low concentration (less than 5mg/L) of H2O2 injection within 10% of the input value, indicating that both mixers were appropriate for required H2O2 concentration and mixing intensity of UV/ H2O2 AOP process. Additionally, the elliptical-type inline mixer proved to be more stable than the nozzle-type injection mixer when dealing with highly concentrated pollutants entering the UV/H2O2 AOP process. It is recommended to use a suitable mixing device to meet the desired range of H2O2 concentration in AOP process.

Keywords

Acknowledgement

This work was supported by the Korean Ministry of Environment as the "Global Top Project (RE201606104). This work was supported by the 2022 Research Fund of the University of Seoul (202204081003).

References

  1. Bottino, A., Capannelli, G., Comite, A., Ferrari F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water treat., 2(1), 63-74. https://doi.org/10.12989/mwt.2011.2.1.063. 
  2. Byun, S., Oh, J., Lee, B. and Lee, S. (2005), "Improvement of coagulation efficiency using instantaneous flash mixer (IFM) for water treatment", Colloid. Surface. A., 268(1-3), 104-110. https://doi.org/10.1016/j.colsurfa.2005.06.027. 
  3. Carmen, T., Gilca, A.F., Barjoveanu, G. and Fiore, S. (2018), "Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment", J. Clean. Prod., 197, 1210-1221. https://doi.org/10.1016/j.jclepro.2018.06.247. 
  4. Chan, S.N., Qiao, Q.S., Lee, J.H.W., Choi, K.W. and Huang, J.C. (2017), "Modeling of mixing and rapid chlorine demand in sewage disinfection with dense chlorine jets", J. Environ. Eng., 143(11), 04017074. https://doi.org/10.1061/(ASCE)EE.1943-7870.000127. 
  5. Craik, S.A., Smith, D.W., Chandrakanth, M. and Belosevic, M. (2003), "Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone", Water Res., 37(15), 3622-3631. https://doi.org/10.1016/S0043-1354(03)00285-9. 
  6. Fedorov, K., Dinesh, K., Sun, X., Soltani, R.D.C, Wang, Z., Sonawane, S. and Boczkaj G. (2022), "Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon-A review", Chem. Eng. J., 432, 134191. https://doi.org/10.1016/j.cej.2021.134191. 
  7. Feng. C.Y., Matsuura, T., Ismail, A.F. (2012), "Progresses in membrane and advanced oxidation processes for water treatment", Membr. Water Treat., 3(3), 181-200. https://doi.org/10.12989/mwt.2012.3.3.181. 
  8. Haddadi, M.M., Hosseini, S.H., Rashtchian, D. and Olazar, M. (2020), "Comparative analysis of different static mixers performance by CFD technique: An innovative mixer", Chinese J. Chem. Eng., 28(3), 672-684. https://doi.org/10.1016/j.cjche.2019.09.004. 
  9. Heydari, F., Osfouri, S., Abbasi, M., Dianat, M.J., Khodaveisi, J. (2021), "Treatment of highly polluted grey waters using Fenton, UV/ H2O2 and UV/TiO2 processes", Membr. Water treat., 12(3), 125-132. https://doi.org/10.12989/mwt.2021.12.3.125. 
  10. Hosseini, S.M., Razzaghi, K. and Shahraki, F. (2019), "Design and characterization of a Low-pressure-drop static mixer", AlChE J., 65(3), 1126-1133. https://doi.org/10.1002/aic.16505. 
  11. Hubner, U., von Gunten, U. and Jekel, M. (2015), "Evaluation of the persistence of transformation products from ozonation of trace organic compounds-A critical review", Water Res., 68, 150-170. https://doi.org/10.1016/j.watres.2014.09.051. 
  12. Ike, I.A., Karanfil, T., Cho, J.W. and Hur, J. (2019), "Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes-a critical review", Water Res., 164, 114929. https://doi.org/10.1016/j.watres.2019.114929. 
  13. Jang, P., Kim, H., Kyung, G. and Oh, H. (2021), "Improved mixing of hydrogen peroxide injection in advanced oxidation process treatment using computational fluid dynamics", Desalin. Water. Treat., 227, 124-131. http://doi.org/10.5004/dwt.2021.27359. 
  14. Kwon, M., Kim, S., Ahn, Y., Jung, Y., Joe, W.H., Lee, K. and Kang, J. (2015), "Removal of residual ozone in drinking water treatment using hydrogen peroxide and sodium thiosulfate", J. Korean Soc. Water Wastewater, 29(4), 481-491. https://doi.org/10.11001/jksww.2015.29.4.481. 
  15. KWWA (Korea Water and Wastewater Works Association. (2023), "Injection facility of coagulation", in: Design standards of water supply system(commentary), Korean Ministry of Environment, 678-693. 
  16. Lee, J.H.W., Qiao, Q.S., Chan, S.N., Choi, K.W. and Chau, H.K.M. (2023), "Reduction of chlorine disinfection dosage through optimal jet design in the Hong Kong harbor area treatment scheme", J. Environ. Eng., 149(2), 05022009. https://doi.org/10.1016/JOEEDU.EEENG-6868. 
  17. Lei, H., Guan, X., Sun, Y. and Yan, H. (2022), "A novel design of in-line static mixer for permanganate/bisulfite process: Numerical simulations and pilot-scale testing", Water Environ. Res., 94(5), e10725. https://doi.org/10.1002/wer.10725. 
  18. Lin, J.L., Pan, J.R. and Huang, C. (2013), "Enhanced particle destabilization and aggregation by flash-mixing coagulation for drinking water treatment", Sep. Purif. Technol., 115, 145-151. https://doi.org/10.1016/j.seppur.2013.05.013. 
  19. Marcoux, A., Pelletier, G., Legay, L., Bouchard, C. and Rodriguez, M.J. (2017), "Behavior of non-regulated disinfection by-products in water following multiple chlorination points during treatment", Sci. Total Environ., 586, 870-878. https://doi.org/ 10.1016/j.scitotenv.2017.02.066. 
  20. McConnachie, G.L., Folkard, G.K., Mtawali, M.A. and Sutherland, J.P. (1999), "Field trials of appropriate hydraulic flocculation processes", Water Res., 33(6), 1425-1434. https://doi.org/10.1016/S0043-1354(98)00339-X. 
  21. Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. and Hubner, U. (2018), "Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review", Water Res., 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042. 
  22. Mysore, C., Leparc, J., Lake, R., Agutter, P. and Prevost, M. (2004), "Comparing static mixer performances at pilot and full scale for ozonation, inactivation of bacillus subtilis, and bromate formation in water treatment", Ozone Sci. Eng., 26(2), 207-215. https://doi.org/10.1080/01919510490439609. 
  23. Oh, J.I. and Lee, S.H. (2005), "Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production", J. Membrane Sci., 254(1-2), 39-47. https://doi.org/10.1016/j.memsci.2004.12.030. 
  24. Park, J.I., Lee, Y., Jang, K.A, Kim, T.H., Park, C.J. and Yoo, J.H. (2019), "A study on the optimization about peroxone(O3/H2O2-AOP)-quenching process in G water treatment plant for 2-MIB treatment and residual ozone removal", J. Korean Soc. Environ. Eng., 41(12), 703-715. https://doi.org/10.4494/KSEE.2019.41.12.703. 
  25. Rahmani, R.K., Ayasoufi, A. and Keith, T.G. (2007), "A numerical study of the global performance of two static mixers", J. Fluid. Eng., 129(3), 338-349. https://doi.org/10.1115/1. 2427082. 
  26. Rauline, D., Le Blevec, J.M., Bousquet, J. and Tanguy, P.A. (2000), "A comparative assessment of the performance of the Kenics and SMX static mixers", Chem. Eng. Res. Des., 78(3), 389-396. https://doi.org/10.1205/026387600527284. 
  27. Rubio-Clemente, A., Chica, E. and Penuela, G.A. (2017) "Kinetic modeling of the UV/ H2O2 process: determining the effective hydroxyl radical concentration", in Physico-Chemical Wastewater Treatment and Resource Recovery, Intech. https://doi.org/10.5772/67803. 
  28. Seo, J.W., Jeong, J.Y., Lee C.H. (2019), "Photocatalytic degradation of organic compounds by 2-ethyimidazole-treated titania under visible light lumination", Membr. Water treat., 10(3), 223-229. https://doi.org/10.12989/mwt.2019.10.3.223. 
  29. Shahid, M.K., Kashif, A., Fuwad, A. and Choi, Y. (2021), "Current advances in treatment technologies for removal of emerging contaminants from water-A critical review", Coordin. Chem. Rev., 442, 213993. https://doi.org/10.1016/j.ccr.2021.213993. 
  30. Singh, M.K., Kang, T.G., Anderson, P.D., Meijer, H.E.H. and Hrymak, A.N. (2009), "Analysis and optimization of low-pressure drop static mixers", AlChE J., 55(9), 2208-2216. https://doi.org/10.1002/aic.11846. 
  31. Thakur, R.K., Vial, C., Nigam, K.D.P., Nauman, E.B. and Djelveh, G. (2003), "Static mixers in the process industries-A review", Chem. Eng. Res. Des., 81(7), 787-826. https://doi.org/10.1205/026387603322302968. 
  32. Tian, F., Ye, W., Xu, B., Hu, X., Ma, S., Lai, F., Gao, Y., Xing, H., Xia, W. and Wang, B. (2020), "Comparison of UV-induced AOPs(UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2) in the degradation of iopamidol: Kinetics, energy requirements and DBPS-related toxicity in sequential disinfection processes", Chem. Eng. J., 398, 125570. https://doi.org/10.1016/j.cej.2020.125570. 
  33. Vadasarukkai, Y.S. and Gagnon, G.A. (2015), "Application of low-mixing energy input for the coagulation process", Water Res., 84, 333-341. https://doi.org/10.1016/j.watres.2015.07.049. 
  34. Ye, C., Ma, X., Deng, J., Li, X., Li, Q. and Dietrich, A. M. (2021), "Degradation of saccharin by UV/H2O2 and UV/PS processes: A comparative study", Chemosphere, 288, 132337. https://doi.org/10.1016/j.chemosphere.2021.132337. 
  35. Zeng, H., Zhang, G., Ji, Q., Liu, H., Hua, X., Xia, H., Sillanpaa, M. and Qu, J. (2020), "pH-independent production of hydroxyl radical from atomic H*- mediated electrocatalytic H2O2 reduction: A green fenton process without byproducts", Environ. Sci. Technol., 54, 14725-14831. https://doi.org/10.1021/acs.est.0c04694 
  36. Zhang, J., Sun, B. and Guan, X. (2013), "Oxidative removal of bisphenol a by permanganate: Kinetics, pathways and influences of co-existing chemicals", Sep. Purif. Technol., 107, 48-53. https://doi.org/10.1016/j.seppur.2013. 01.023.