DOI QR코드

DOI QR Code

Fundamental parameters of nanoporous filtration membranes

  • Wei Li (School of Mechanical Technology, Wuxi Institute of Technology) ;
  • Xiaoxu Huang (School of Mechanical Technology, Wuxi Institute of Technology) ;
  • Yongbin Zhang (College of Mechanical Engineering, Changzhou University)
  • Received : 2023.01.03
  • Accepted : 2023.07.10
  • Published : 2023.05.25

Abstract

The design theory for nanoporous filtration membranes needs to be established. The present study shows that the performance and technical advancement of nanoporous filtration membranes are determined by the fundamental parameter I (in the unit Watt1/2) which is formulated as a function of the shear strength of the liquid-pore wall interface, the radius of the filtration pore, the membrane thickness, and the bulk dynamic viscosity of the flowing liquid. This parameter determines the critical power loss on a single filtration pore for initiating the wall slippage, which is important for the flux of the membrane. It also relates the membrane permeability to the power cost by the filtration pore. It is shown that for biological cellular membranes its values are on the scale 1.0E-8Watt1/2, for mono-layer graphene membranes its values are on the scale 1.0E-9Watt1/2, and for nanoporous membranes made of silica, silicon nitride or silicon carbonized its values are on the scale 1.0E-5Watt1/2. The scale of the value of this parameter directly measures the level of the performance of a nanoporous filtration membrane. The carbon nanotube membrane has the similar performance with biological cellular membranes, as it also has the value of I on the scale 1.0E-8Watt1/2.

Keywords

References

  1. Ariono, D., Aryanti, P.T.P., Wardani, A.K. and Wenten, I.G. (2018), "Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane", Membr. Water Treat., 9(5), 353-361. https://doi.org/10.12989/mwt.2018.9.5.353
  2. Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nature Nanotech., 3, 73-74. https://doi.org/10.1038/nnano.2008.13
  3. Bottino, A., Capannelli, G., Comite, A., Ferrari, F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water Treat., 2(1), 63-74. http://doi.org/10.12989/mwt.2011.2.1.063
  4. Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discus. Chem. Soc., 59, 97-108. https://doi.org/10.1039/DC9755900097
  5. Cadotte, J.E., Petersen, R.J., Larson, R.E. and Erickson, E.E. (1980), "A new thin film composite seawater reverse osmosis membrane", Desalination, 32, 25-31. https://doi.org/10.1016/S0011-9164(00)86003-8
  6. Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C. (2016), "Multilayer nanoporous graphene membranes for water desalination", Nano Lett., 16, 1027. https://doi.org/10.1021/acs.nanolett.5b04089
  7. Elizabeth, E.M.O., Barbosa, C.C.R. and Afonso, J.C. (2012), "Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium", Membr. Water Treat., 3, 231-242. http://doi.org/10.12989/mwt.2012.3.4.231
  8. El-ghzizel, S., Jalte, H., Zeggar, H., Zait, M., Belhamidi, S., Tiyal, F., Hafsi, M., Taky, M. and Elmidaoui, A. (2019), "Autopsy of nanofiltration membrane of a decentralized demineralization plant", Membr. Water Treat., 10, 277-286. https://doi.org/0.12989/mwt.2019.10.4.277 https://doi.org/10.4.277
  9. Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326, 58-63. http://doi.org/10.1016/j.memsci.2008.09.039
  10. Harrell, C.C., Siwy, Z.S. and Martin, C.R. (2006), "Conical nanopore membranes: Controlling the nanopore shape", Small, 2, 157. https://doi.org/10.1002/smll.200690004
  11. Huang, L., Zhang, M., Li, C. and Shi, G. (2015), "Graphene-based membranes for molecular separation", J. Phys. Chem. Lett., 6, 2806-2815. https://doi.org/10.1021/acs.jpclett.5b00914
  12. Holt, J.K., Park, H.G., Wang, Y., Staermandn, M., Artyukhin, A. B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037. https://doi.org/10.1126/science.1126298
  13. Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J. J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K., and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376, 738-743. https://doi.org/10.1126/science.abd0966
  14. Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano, 4, 3548-3553. http://doi.org/10.1021/nn1014006
  15. Jang, D., Idrobo, J.C., Laoui, T. and Karnik, R. (2017), "Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes", ACS Nano, 10042. https://doi.org/10.1021/acsnano.7b04299
  16. Jin, Y., Choi, Y., Song, K.G., Kim, S. and Park, C. (2019), "Iron and manganese removal in direct anoxic nanofiltration for indirect potable reuse", Membr. Water Treat., 10(4), 299-305. https://doi.org/0.12989/mwt.2019.10.4.299 https://doi.org/10.4.299
  17. Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396
  18. Kim, D.W., Choi, J., Kim, D. and Jung, H.T. (2016), "Enhanced water permeation based on nanoporous multilayer graphene membranes: The role of pore size and density", J. Mater. Chem. A, 4(45), 17773-17781. https://doi.org/10.1039.C6TA06381K. https://doi.org/10.1039.C6TA06381K
  19. Koklu, A., Li, J., Sengor, S. and Beskok, A. (2017), "Pressure‑driven water flow through hydrophilic alumina nano-membranes", Microfluid. Nanofluid., 21, 124. https://doi.org/10.1007/s10404-017-1960-1
  20. Lan, W.J., Holden, D.A., Liu, J. and White, H.S. (2015), "Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore", J. Phys. Chem. C, 115, 18445-18452. https://doi.org/10.1021/jp204839j
  21. Li, J. and Zhang, Y.B. (2021), "Flow equations and their borderlines for different regimes of mass transfer", Front. Heat Mass Transf., 16, 21. https://doi.org/10.5098/hmt.16.21
  22. Li, N., Yu, S., Harrell, C. and Martin, C.R. (2004), "Conical nanopore membranes: Preparation and transport properties", Anal. Chem., 76, 2025-2030. https://doi.org/10.1021/ac035402e
  23. Lin, W. and Zhang, Y.B. (2022), "Water permeation through human cell membrane", J. Appl. Mech. Tech. Phys., 63(6), 957-962. https://doi.org/10.1134/S0021894422060062
  24. Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a
  25. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. and Geim, A.K. (2012), "Unimpeded permeation of water through helium-leak-tight graphene based membranes", Science, 335, 442-444. https://doi.org/10.1126/science.1211694
  26. Pinkus, O. and Sternlicht, B. (1961), Theory of Hydrodynamic Lubrication, Mc Graw-Hill, New York, U.S.A.
  27. Sanjay, R., Nagarajan, P., Sabyasachi G., Subhadip M., Suryasarathi, B. and Narayan, D. (2021), "Porous graphene-based membranes: Preparation and properties of a unique two-dimensional nanomaterial membrane for water purification", Separ. Purifi. Rev., 50, 262-282. https://doi.org/10.1080/15422119.2020.1725048
  28. Sofos, F. (2021), "A water/ion separation device: theoretical and numerical investigation", Appl. Sci., 11, 8548. https://doi.org/10.3390/app11188548
  29. Stavrogiannis, C., Sofos, F., Karakasidis, T.E. and Vavougios, D. (2022), "Investigation of water desalination/purification with molecular dynamics and machine learning techniques", AIMS Mater. Sci., 9, 919-938. https://doi.org/10.3934/matersci.2022054
  30. Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nature Nanotech., 10, 459-464. https://doi.org/10.1038/nnano.2015.37
  31. Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2011), "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure", J. Membr. Sci., 367, 340-352. https://doi.org/10.1016/j.memsci.2010.11.014
  32. Wang, L., Dumont, R. and Dickson, J.M. (2012), "Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure", J. Chem. Phys., 137, 044102. https://doi.org/10.1063/1.4734484
  33. Wang, M. and Zhang, Y.B. (2021), "Water transport in cellular connexon of human bodies", Front. Heat Mass Transf., 17, 9. http://doi.org/10.5098/hmt.17.9
  34. Yang, S.Y., Ryu, I., Kim, H.Y., Kim, J.K., Jang, S.K. and Russell, T.P. (2006), "Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses", Adv. Mater., 18, 709-712. https://doi.org/10.1002/adma.200501500
  35. Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2010), "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44, 3812-3818. https://doi.org/10.1021/es1002555
  36. Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20, 522-538.
  37. Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008
  38. Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105
  39. Zhang, Y.B. (2018), "Optimum design for cylindrical-shaped nanoporous filtration membrane", Int. Commun. Heat Mass Transf., 96, 130-138. https://doi.org/10.1016/j.icheatmasstransfer.2018.06.003
  40. Zhang, Y.B. (2019a), "Performance of nanoporous filtration membrane with conical pores: For a liquid-particle separation", Front. Heat Mass Transf., 12, 14. https://doi.org/10.5098/hmt.12.14
  41. Zhang, Y.B. (2019b), "Exploring the maximum number of the branch pores in each pore tree applied in an optimized tree-type cylindrical-shaped nanoporous filtering membrane", Curr. Nanosci., 15, 1-5. https://doi.org/10.2174/1573413714666180911100344
  42. Zhang, Y.B. (2019c), "Optimized tree-type cylindrical-shaped nanoporous filtering membranes with 3 or 5 branch pores in each pore tree", Current Nanosci., 15, 647-53. https://doi.org/10.2174/1573413714666181012122839
  43. Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069