실리콘 태양전지 응용을 위한 황 결핍 n형 MoS2 층 연구

Sulfur Defect-induced n-type MoS2 Thin Films for Silicon Solar Cell Applications

  • 이인승 (전북대학교 기계공학과) ;
  • 김근주 (전북대학교 기계공학과)
  • Inseung Lee (Department of Mechanical Engineering, Jeonbuk National University) ;
  • Keunjoo Kim (Department of Mechanical Engineering, Jeonbuk National University)
  • 투고 : 2023.08.03
  • 심사 : 2023.09.06
  • 발행 : 2023.09.30

초록

We investigated the MoS2 thin film layer by thermolytic deposition and applied it to the silicon solar cells. MoS2 thin films were made by two methods of dipping and spin coating of (NH4)2MoS4 precursor solution. We implemented two types of substrates of microtextured and nano-microtextured 6-in. Si pn junction wafers. The fabricated MoS2 thin film layer was analyzed, and solar cells were fabricated by applying the standard silicon solar cell process. The MoS2 thin film layer of sulfur-deficient form was deposited on the n-type emitter layer, and electrons, which are minority carriers, were well transported at the interface and exhibited photovoltaic solar cell characteristics. The cell efficiencies were achieved at 5% for microtextured wafers and 2.56% for nano-microtextured wafers.

키워드

과제정보

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1060102). This work was also supported by the 2022-2023 project of Jeonbuk National University.

참고문헌

  1. Wang, L., Tang, J., and Huang, Q. A. "Gamma and electron beam irradiation effects on the resistance of micromachined polycrystalline silicon beams." Sensors and Actuators A: Physical, Vol. 177, pp. 99-104, (2012).  https://doi.org/10.1016/j.sna.2012.01.028
  2. Tahersima, M. H., and Sorger, V. J. "Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials." Nanotechnology, Vol. 26(34), p. 344005, (2015). 
  3. Furchi, M. M., Holler, F., Dobusch, L., Polyushkin, D. K., Schuler, S., and Mueller, T. "Device physics of van der Waals heterojunction solar cells." npj 2D Materials and Applications, Vol 2(1), p. 3, (2018). 
  4. Liu, Y., Hao, L., Gao, W., Xue, Q., Guo, W., Wu, Z., ... and Zhang, W. "Electrical characterization and ammonia sensing properties of MoS2/Si p-n junction." Journal of Alloys and Compounds, Vol. 631, pp. 105-110, (2015).  https://doi.org/10.1016/j.jallcom.2015.01.111
  5. Richter, A., Benick, J., Muller, R., Feldmann, F., Reichel, C., Hermle, M., and Glunz, S. W. "Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells." Progress in Photovoltaics: Research and Applications, Vol. 26(8), pp. 579-586, (2018).  https://doi.org/10.1002/pip.2960
  6. Liu, K. K., Zhang, W., Lee, Y. H., Lin, Y. C., Chang, M. T., Su, C. Y., ... and Li, L. J. "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates." Nano letters, Vol. 12(3), pp. 1538-1544, (2012).  https://doi.org/10.1021/nl2043612
  7. Tsai, D. S., Liu, K. K., Lien, D. H., Tsai, M. L., Kang, C. F., Lin, C. A., ... and He, J. H., "Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments." Acs Nano, Vol. 7(5), pp. 3905-3911, (2013).  https://doi.org/10.1021/nn305301b
  8. Park, H., Lee, J. S., Lim, H. J., Kim, D., Kwon, S., and Yoon, S. "The effect of tertiary-butyl alcohol on the texturing of crystalline silicon solar cells." Journal of the Korean Physical Society, Vol. 55(5 PART 1), pp. 1767-1771, (2009).  https://doi.org/10.3938/jkps.55.1767
  9. Hossain, M. A., Merzougui, B. A., Alharbi, F. H., and Tabet, N. "Electrochemical deposition of bulk MoS2 thin films for photovoltaic applications." Solar Energy Materials and Solar Cells, Vol. 186, pp. 165-174, (2018).  https://doi.org/10.1016/j.solmat.2018.06.026
  10. Akbarzadeh, M., Zandrahimi, M., and Moradpour, E. "Molybdenum Disulfide (MoS2) Coating on AISI 316 Stainless Steel by Thermodiffusion Method." Archives of Metallurgy and Materials, Vol. 62, (2017). 
  11. Fei, L., Lei, S., Zhang, W. B., Lu, W., Lin, Z., Lam, C. H., ... and Wang, Y. "Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes." Nature communications, Vol. 7(1), p. 12206, (2016). 
  12. Park, S. W., Jo, Y. J., Bae, S., Hong, B. H., and Lee, S. K. "Synthesis of Large-Scale Transition Metal Dichalcogenides for Their Commercialization." Applied Science and Convergence Technology, Vol. 29(6), pp. 133-142, (2020).  https://doi.org/10.5757/ASCT.2020.29.6.133
  13. Pei, J., Yang, J., Xu, R., Zeng, Y. H., Myint, Y. W., Zhang, S., ... and Lu, Y. "Exciton and trion dynamics in bilayer MoS2." Small, Vol. 11(48), pp. 6384-6390, (2015).  https://doi.org/10.1002/smll.201501949
  14. Dybala, F., Polak, M. P., Kopaczek, J., Scharoch, P., Wu, K., Tongay, S., and Kudrawiec, R. "Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions." Scientific reports, Vol. 6(1), p. 26663, (2016). 
  15. Satha, S., Sahu, R., Mun, J., and Kim, K. "Thermolytic Deposition of MoS2 Nanolayer for Si Solar Cell Applications." physica status solidi (a), Vol. 217(12), p. 1900993, (2020). 
  16. Hill, H. M., Rigosi, A. F., Roquelet, C., Chernikov, A., Berkelbach, T. C., Reichman, D. R., ... and Heinz, T. F. "Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy." Nano letters, Vol. 15(5), pp. 2992-2997, (2015).  https://doi.org/10.1021/nl504868p
  17. Mukherjee, S., Maiti, R., Katiyar, A. K., Das, S., and Ray, S. K. "Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices." Scientific reports, Vol. 6(1), p. 29016, (2016).