DOI QR코드

DOI QR Code

Shear strength response of clay and sand column with different sand grain shapes

  • Zuheir Karabash (Department of Dams and Water Resources Engineering, University of Mosul) ;
  • Ali Firat Cabalar (Department of Civil Engineering, University of Gaziantep)
  • Received : 2022.10.28
  • Accepted : 2023.10.06
  • Published : 2023.10.25

Abstract

Sand columns in clayey soil are considered one of the most economical and environmentally-friendly soil-improving techniques. It improves the shear strength parameters, reduces the settlement, and increases the bearing capacity of clayey soils. The aim of this paper is to study the effect of grain shape in sand columns on their performance in improving the mechanical properties of clayey soils. An intensive series of consolidated-drained triaxial tests were performed on clay specimens only and clay specimens with sand columns. The parameters examined during the experimental work were grain shape in sand columns (angular, rounded, sub-rounded) and effective confining pressure (50 kPa, 100 kPa, 200 kPa). The results indicated that there is a significant improvement in the deviatoric stress and stiffness values of specimens with sand columns. Improving deviatoric stress values in the use of angular sand grains was found to be higher than those in the use of sub-rounded and rounded sand grains. A 187%, 159%, and 153% increment in deviatoric stress values were observed for the sand columns with angular, sub-rounded, and rounded grain shapes, respectively. The specimens were observed to be more contractive as the sand column was installed, and as the angularity of grains in the sand column was increased. Sand column installation improves significantly the angle of internal friction, and the effective angle of internal friction increases as the angularity of the sand grains increases.

Keywords

References

  1. Alamgir, M., Miura, N., Poorooshasb, H.B. and Madhav, M.R. (1996), "Deformation analysis of soft ground reinforced by columnar inclusions", Comput. Geotech., 18(4), 267-290. https://doi.org/10.1016/0266-352X(95)00034-8. 
  2. Ali, K., Shahu, J.T. and Sharma, K.G. (2014), "Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement", Geosynthetics Int., 21(2),103-118. https://doi.org/10.1680/gein.14.00002. 
  3. Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotech. Geoenviron. Eng., 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405). 
  4. ASTM D7181-11 (2015),"Standard test method for consolidated drained triaxial compression test for soils, Annual Book of ASTM standards, ASTM International, West Conshohocken, PA. 
  5. Ayadat, T. and Hanna, A.M. (2005), "Encapsulated stone columns as a soil improvement technique for collapsible soil", Proceedings of the Institution of Civil Engineers-Ground Improvement, 9(4), 137-147. https://doi.org/10.1680/grim.2005.9.4.137. 
  6. Balaam, N.P., Brown, P.T. and Poulos, H.G. (1977), "Settlement analysis of soft clays reinforced with granular piles", Proceedings of the 5th Southeast Asian Conference on Soil Engineering, Bangkok, August. 
  7. Bergado, D.T., Rantucci, G. and Widodo, S. (1984), "Full scale load tests of granular piles and sand drains in the soft Bangkok clay", Proceedings of the International Conference on In-Situ Soil Rock Reinforcements, 9-11 October, Paris, France. 
  8. Black, J.A., Sivakumar, V., Madhav, M.R. and McCabe, B. (2006), "An improved experimental test set-up to study the performance of granular columns", Geotech. Test. J., 29(3), 193-199. https://doi.org/10.1520/GTJ14195. 
  9. Black, J., Sivakumar, V. and McKinley, J.D. (2007), "Performance of clay samples reinforced with vertical granular columns", Can. Geotech. J., 44(1), 89-95. https://doi.org/10.1139/t06-081. 
  10. Black, J.A., Sivakumar, V. and Bell, A. (2011), "The settlement performance of stone column foundations", Geotechnique, 61(11),909-922. https://doi.org/10.1680/geot.9.P.014. 
  11. Cho, G.C., Dodds, J. and Santamarina, J.C. (2007), "particle shape effects on packing density, stiffness, and strength: natural and crushed sands", J. Geotech. Geoenviron. Eng., 133(11), 1474-1474. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1474). 
  12. Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417. 
  13. Dinarvand, R. and Ardakani, A. (2022), "Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling", Geomech. Eng., 28(5), 505-520. https://doi.org/10.12989/gae.2022.28.5.505. 
  14. Ehsaniyamchi, A. and Ghazavi, M. (2019), "Short-term and long-term behavior of geosynthetic-reinforced stone columns", Soils Found., 59(5), 1579-1590. https://doi.org/10.1016/j.sandf.2019.07.007. 
  15. Fattah, M.Y., Shlash, K.T. and Al-Waily, M.J.M. (2011), "Stress concentration ratio of model stone columns in soft clays", Geotech. Test. J., 34(1), 1. https://doi.org/10.1520/GTJ103060. 
  16. Frikha, W., Tounekti, F., Kaffel, W. and Bouassida, M. (2015), "Experimental study for the mechanical characterization of Tunis soft soil reinforced by a group of sand columns", Soils Found., 55(1), 181-191. https://doi.org/10.1016/j.sandf.2014.12.014. 
  17. Guo, P. and Su, X. (2007), "Shear strength, interparticle locking, and dilatancy of granular materials", Can. Geotech. J., 44(5),579-591. https://doi.org/10.1139/t07-010. 
  18. Hanna, A.M., Etezad, M. and Ayadat, T. (2013), "Mode of failure of a group of stone columns in soft soil", Int. J. Geomech., 13(1), 87-96. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000175. 
  19. Hu, W. (1995), "Physical modelling of group behaviour of stone column foundations" (Doctoral dissertation, University of Glasgow). 
  20. Indraratna, B., Basack, S. and Rujikiatkamjorn, C. (2013), "Numerical solution of stone column-improved soft soil considering arching, clogging, and smear effects", J. Geotech. Geoenviron. Eng., 139(3), 377-394. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000789. 
  21. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C. and Sloan, S.W. (2015), "Coupled discrete element-finite difference method for analyzing the load-deformation behaviour of a single stone column in soft soil", Comput. Geotech., 63, 267-278. https://doi.org/10.1016/j.compgeo.2014.10.002. 
  22. Jaiswal, A. and Kumar, R. (2022), "Finite element analysis of granular column for various encasement conditions subjected to shear load", Geomech. Eng., 29(6), 645-655. https://doi.org/10.12989/gae.2022.29.6.645. 
  23. Jorat, M.E., Kreiter, S., Morz, T., Moon, V. and de Lange, W. (2013), "Strength and compressibility characteristics of peat stabilized with sand columns", Geomech. Eng., 5(6), 575-594. https://doi.org/10.12989/gae.2013.5.6.575. 
  24. Juran, I. and Guermazi, A. (1988), "Settlement response of soft soils reinforced by compacted sand columns", J. Geotech. Eng., 114(8), 930-943. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(930). 
  25. Kumar, G. and Samanta, M. (2020), "Experimental evaluation of stress concentration ratio of soft soil reinforced with stone column", Innov. Infrastruct. Solutions, 5(1), 1-11. https://doi.org/10.1007/s41062-020-0264-6. 
  26. Matsui, T., Oda, K. and Nabeshima, Y. (2001), "Non-linear mechanism and performance of clay-sand column system", Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey. 
  27. Muir Wood, D., Hu, W. and Nash, D.F. (2000), "Group effects in stone column foundations: model tests", Geotechnique, 50(6),689-698. https://doi.org/10.1680/geot.2000.50.6.689. 
  28. Munfakh, G.A., Sarkar, S.K. and CasteIli, R.C. (1984), "Performance of a test embankment founded on stone columns", Piling and Ground Treatment, Thomas Telford Ltd., London.
  29. Murugesan, S. and Rajagopal, K. (2009), "Shear load tests on stone columns with and without geosynthetic encasement", Geotech. Test. J., 32(1), 76-85. https://doi.org/10.1520/GTJ101219. 
  30. Nazari Afshar, J. and Ghazavi, M. (2014), "Experimental studies on bearing capacity of geosynthetic reinforced stone columns", Arabian J. Sci. Eng., 39(3), 1559-1571. https://doi.org/10.1007/s13369-013-0709-8. 
  31. Najjar, S., Sadek, S. and Bou Lattouf, H. (2013), "The drained strength of soft clays with partially penetrating sand columns at different area replacement ratios", Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris. 
  32. Najjar, S.S., Sadek, S. and Maakaroun, T. (2010), "Effect of sand columns on the undrained load response of soft clays", J. Geotech. Geoenviron. Eng., 136(9), 1263-1277. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000328. 
  33. Ngo, N.T., Indraratna, B. and Rujikiatkamjorn, C. (2016), "Load-deformation behavior of a stone column using the coupled DEM-FDM method", Proceedings of the Geotechnical and Structural Engineering Congress 2016, United States, https://doi.org/10.1061/9780784479742.137. 
  34. Shamsi, M., Ghanbari, A. and Nazariafshar, J. (2019), "Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers", Geomech. Eng., 19(4), 329-342. https://doi.org/10.12989/GAE.2019.19.4.329. 
  35. Siahaan, F., Indraratna, B., Ngo, N., Rujikiatkamjorn, C. and Heitor, A. (2018), "Influence of particle gradation and shape on the performance of stone columns in soft clay", Geotech. Test. J., 41 (6), 1-16. https://doi.org/10.1520/GTJ20160234. 
  36. Sivakumar, V., McKelvey, D., Graham, J. and Hughes, D. (2004), "Triaxial tests on model sand columns in clay", Can. Geotech. J., 41(2), 299-312. https://doi.org/10.1139/t03-097. 
  37. Sivakumar, V., Glynn, D., Black, J. and McNeill, J. (2007), "A laboratory model study of the performance of vibrated stone columns in soft clay", Proceedings of the 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid, Spain. 
  38. Sohaib, N., SarfrazFaiz, M. and Sami, M.F. (2020), "Experimental study on improvement of soft clay using sand columns", J. Civil Eng. Architect., 14, 391-401. https://doi:10.17265/1934-7359/2020.07.006. 
  39. Tandel, Y.K., Solanki, C.H. and Desai, A.K. (2014), "Field behaviour geotextile reinforced sand column", Geomech. Eng., 6(2), 195-211. https:/doi.org/10.12989/gae.2014.6.2.195. 
  40. Yoo, C. and Abbas, Q. (2020), "Laboratory investigation of the behavior of a geosynthetic encased stone column in sand under cyclic loading", Geotext. Geomembranes, 48(4), 431-442. https://doi.org/10.1016/j.geotexmem.2020.02.002