DOI QR코드

DOI QR Code

Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay

  • Bibhash Kumar (Department of Civil Engineering, National Institute of Technology Uttarakhand) ;
  • Jagdish P. Sahoo (Department of Civil Engineering, Indian Institute of Technology Kanpur)
  • Received : 2022.05.10
  • Accepted : 2023.08.23
  • Published : 2023.10.25

Abstract

This paper presents stability evaluation of unlined tunnels with semi-circular arch and straight sides (SASS) driven in non-homogeneous and anisotropic undrained clay. Numerical analysis has been conducted based on lower bound finite element limit analysis with second order cone programming under plane strain condition. The solutions will be used for the assessment of stability of unlined semi-circular arch tunnels and tunnels in which semi-circular roof is supported over rectangular/square sections. The stability charts have been generated in terms of a non-dimensional factor considering linear variation in undrained anisotropic strength for normally consolidated and lightly over consolidated clay with depth, and constant undrained anisotropic strength for heavily over-consolidated clay across the depth. The effect of normalized surcharge pressure on ground surface, non-homogeneity and anisotropy of clay, tunnel cover to width ratio and height to width ratio of tunnel on the stability factor and associated zone of shear failure at yielding have been examined and discussed. The geometry of tunnel in terms of shape and size, and non-homogeneity and anisotropy in undrained strength of clay has been observed to influence significantly the stability of unlined SASS tunnels.

Keywords

References

  1. Bishop, A.W. (1966), "The strength of soils as engineering materials", Geotechnique, 16, 89-128. https://doi.org/10.1680/geot.1966.16.2.91.
  2. Cao, X., Zhang, J. and Sun, D.A. (2022), "Drained cylindrical cavity expansion in K0-consolidated anisotropic soils under biaxial in-situ stresses", Geomech. Eng., 28(5), 493-503. https://doi.org/10.12989/gae.2022.28.5.493.
  3. Casagrande, A. and Carillo, N. (1944), "Shear failure of anisotropic soils", Contrib Soil Mech (BSCE), 1941-1953, 122-135.
  4. Chen, G.H., Zou, J.F. and Qian, Z.H. (2019), "An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils", Geomech. Eng., 17(1), 97-107. https://doi.org/10.12989/gae.2019.17.1.097
  5. Davis, E.H. and Christian, J.T. (1971), "Bearing capacity of anisotropic cohesive soil", J. Soil Mech. Found. Divis. ASCE, 97(5), 753-769. https://doi.org/10.1061/JSFEAQ.0001594.
  6. Davis, E.H., Gunn, M.J. Mair, R.J. and Seneviratine, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397.
  7. Drucker, D.C. (1953), "Limit analysis of two and three dimensional soil mechanics problems", J. Mech. Phys. Solids, 1, 217-226. https://doi.org/10.1016/0022-5096(53)90001-5
  8. Duncan, J.M. (1966), "Anisotropy and stress reorientation in clay", J. Soil Mech. Found. Divis. ASCE, 92(4093 Proceeding).
  9. Duncan, J.M. and Seed, H.B. (1966), "Anisotropy and stress reorientation in clay." J. Soil Mech. Found. Divis. ASCE, 92(5), 21-50. https://doi.org/10.1061/JSFEAQ.0000909.
  10. Du, D., Dias, D. and Yang, X. (2018), "Analysis of earth pressure for shallow square tunnels in anisotropic and non-homogeneous soils", Comput. Geotech., 104, 226-236. https://doi.org/10.1016/j.compgeo.2018.08.022.
  11. Guo, Z., Liu, X. and Zhu, Z. (2021), "Limit analysis of seismic collapse for shallow tunnel in inhomogeneous ground", Geomech. Eng., 24(5), 491-503. https://doi.org/10.12989/gae.2021.24.5.491.
  12. Hansen, J.B. and Gibson, R.E. (1949), "Undrained shear strengths of anisotropically consolidated clays", Geotechnique, 1(3), 189-200. https://doi.org/10.1680/geot.1949.1.3.189.
  13. Huang, M., Tang, Z., Zhou, W. and Yuan, J. (2018), "Upper bound solutions for face stability of circular tunnels in nonhomogeneous and anisotropic clays", Comput. Geotech., 98, 189-196. https://doi.org/10.1016/j.compgeo.2018.02.015.
  14. Hvorslev, M.J. (1960), "Physical components of shear strength of saturated clays", Proceedings of the ASCE Research Conference on Shear Strength of Cohesive Soils, Boulder, CO, 169-273.
  15. Jakobson, B. (1955), "Isotropy of clays", Geotechnique, 5, 23-28. https://doi.org/10.1680/geot.1955.5.1.23.
  16. Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. https://doi.org/10.12989/gae.2016.11.4.471.
  17. Kumar, B. and Sahoo, J.P. (2020a), "Support pressure for circular tunnels in two layered undrained clay", J. Rock Mech. Geotech. Eng., 12(1), 135-148. https://doi.org/10.1016/j.jrmge.2019.04.007.
  18. Kumar, B. and Sahoo, J.P. (2020b), "Support pressure for circular tunnels advanced below water bodies", Tunn. Undergr. Sp. Tech., 97, 103214. https://doi.org/10.1016/j.tust.2019.103214.
  19. Kumar, B. and Sahoo, J.P. (2021), "Stability of unsupported circular tunnels in anisotropic normally and over consolidated saturated clay", Comput. Geotech., 135, 104148. https://doi.org/10.1016/j.compgeo.2021.104148.
  20. Kumar, B. and Sahoo, J.P. (2023a), "Support pressure for stability of horseshoe-shaped tunnels in undrained clay using lower-bound finite-element limit analysis", Int. J. Geomech., 23(1), 04022264. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002621.
  21. Kumar, B. and Sahoo, J.P. (2023b), "Lining pressure for circular tunnels in two layered clay with anisotropic undrained shear strength", Geomech. Geoeng., 18(2), 91-104. https://doi.org/10.1080/17486025.2021.2012077.
  22. Kumar, B. and Sahoo, J.P. (2023c), "Stability assessment of unlined real horseshoe-shaped tunnels in anisotropic and heterogeneous undrained clay", Environ. Earth Sci., 82(9), 1-16. https://doi.org/10.1007/s12665-023-10895-2.
  23. Ladd, C.C. (1991), "Stability evaluations during stage construction", J. Geotech. Eng., 117(4), 540-615. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:4(540)
  24. Lee, K.M. and Rowe, R.K. (1989), "Effects of undrained strength anisotropy on surface subsidences induced by the construction of shallow tunnels", Can. Geotech. J., 26(2), 279-291. https://doi.org/10.1139/t89-037.
  25. Li, C. and Zoua, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model", Geomech. Eng., 19(2), 141-151. https://doi.org/10.12989/gae.2019.19.2.141.
  26. Li, C., Zou, J.F. and Li, L. (2019), "Elasto-plastic solution for cavity expansion problem in anisotropic and drained soil mass", Geomech. Eng., 19(6), 513-522. https://doi.org/10.12989/gae.2019.19.6.513.
  27. Lo, K.Y. (1965), "Stability of slopes in anisotropic soil", J. Soil Mech. Found. Div., 31, 85-106. https://doi.org/10.1061/JSFEAQ.0000778
  28. Lo, K.Y. and Milligan, V. (1967), "Shear strength properties of two stratified clays", J. Soil Mech. Found. Div., 93(1), 1-15. https://doi.org/10.1061/JSFEAQ.0000928.
  29. Makrodimopoulos, A. and Martin, C.M. (2006), "Lower bound limit analysis of cohesive-frictional materials using second-order cone programming", Int. J. Numer. Meth. Eng., 66(4), 604-634. https://doi.org/10.1002/nme.1567.
  30. MOSEK ApS, (2015), The MOSEK optimization toolbox for MATLAB manual. Copenhagen, Denmark: MOSEK ApS. Version 7.1 (Revision 28).
  31. MATLAB [Computer software]. (2015), MathWorks, Natick, MA; 2015b.
  32. Osman, A.S. (2010), "Stability of unlined twin tunnels in undrained clay", Tunn. Undergr. Sp. Tech., 25(3), 290-296. https://doi.org/10.1016/j.tust.2010.01.004.
  33. Osman, A.S., Mair, R.J. and Bolton, M.D. (2006), "On the kinematics of 2D tunnel collapse in undrained clay", Geotechnique, 56(9), 585-595. https://doi.org/10.1680/geot.2006.56.9.585.
  34. Pan, Q. and Dias, D. (2016), "Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach", Int. J. Geomech., 16(3), 04015076. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000569.
  35. Rahaman, O. and Kumar, J. (2020), "Stability analysis of twin horse-shoe shaped tunnels in rock mass", Tunn. Undergr. Sp. Tech., 98, 103354. https://doi.org/10.1016/j.tust.2020.103354.
  36. Saada, A.S. (1972). "Discussion on bearing capacity of anisotropic cohesive soil", J. Soil Mech. Found. Div., 98, 132-135.
  37. Sahoo, J.P. and Kumar, B. (2019a), "Support pressure for stability of circular tunnels driven in granular soil under water table", Comput. Geotech., 109, 58-68. https://doi.org/10.1016/j.compgeo.2019.01.005.
  38. Sahoo, J.P. and Kumar, B. (2019b), "Stability of circular tunnels in clay with an overlay of sand", Int. J. Geomech., 19(3), 06018039. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001360.
  39. Sahoo, J.P. and Kumar, B. (2021), "Peripheral stability of circular tunnels in anisotropic undrained clay", Tunn. Undergr. Sp. Tech., 114, 103898. https://doi.org/10.1016/j.tust.2021.103898.
  40. Sahoo, J.P. and Kumar, J. (2012), "Seismic stability of a long unsupported circular tunnel", Comput. Geotech., 44, 109-115. https://doi.org/10.1016/j.compgeo.2012.03.015.
  41. Sahoo, J.P. and Kumar, J. (2013a), "Stability of long unsupported twin circular tunnels in soils", Tunn. Undergr. Sp. Tech., 38, 326-335. https://doi.org/10.1016/j.tust.2013.07.005.
  42. Sahoo, J.P. and Kumar, J. (2013b), "Stability of a long unsupported circular tunnel in clayey soil by using upper bound finite element limit analysis", Proceedings of the Indian National Science, Academy, 79(64), 807-815. https://doi.org/10.16943/ptinsa/2013/v79i4/48005.
  43. Sloan, S.W. (1988), "Lower bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Meth. Geomech., 12(1), 61-77. https://doi.org/10.1002/nag.1610120105.
  44. Sun, R., Yang, J., Liu, S. and Yang, F. (2021), "Undrained stability analysis of dual unlined horseshoe-shaped tunnels in nonhomogeneous clays using lower bound limit analysis method", Comput. Geotech., 133, 104057. https://doi.org/10.1016/j.compgeo.2021.104057.
  45. Ukritchon, B. and Keawsawasvong, S. (2018), "Lower bound limit analysis of an anisotropic undrained strength criterion using second-order cone programming", Int. J. Numer. Anal. Meth. Geomech., 42(8), 1016-1033. https://doi.org/10.1002/nag.2781.
  46. Ukritchon, B. and Keawsawasvong, S. (2020), "Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength", Geotech. Geol. Eng., 38(1), 897-915. https://doi.org/10.1007/s10706-019-01023-8.
  47. Wilson, D.W., Abbo, A.J., Sloan, S.W. and Lyamin, A.V. (2014), "Undrained stability of dual square tunnels", Int. J. Geomech., 14(1), 69-79. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000288.
  48. Xu, J., Li, Y. and Yang, X. (2018), "Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope", Geomech. Eng., 14(1), 71-81. https://doi.org/10.12989/gae.2018.14.1.071.
  49. Yu, S. (2018), "Limit analysis of a shallow subway tunnel with staged construction", Geomech. Eng., 15(5), 1039-1046. https://doi.org/10.12989/gae.2018.15.5.1039.
  50. Zhang, H., Chen, Q., Chen, J. and Wang, J. (2017). "Application of a modified structural clay model considering anisotropy to embankment behavior", Geomech. Eng., 13(1), 79-97. https://doi.org/10.12989/gae.2017.13.1.079.
  51. Zhang, J., Feng, T., Yang, J., Yang, F. and Gao, Y. (2018), "Upper-bound stability analysis of dual unlined horseshoe-shaped tunnels subjected to gravity", Comput. Geotech., 97, 103-110. https://doi.org/10.1016/j.compgeo.2018.01.006.