DOI QR코드

DOI QR Code

Electrochemical Properties and Adsorption Performance of Carbon Materials Derived from Coffee Grounds

커피찌꺼기로부터 얻어진 탄소 소재의 전기화학적 성질 및 흡착 성능

  • Jin Ju Yoo (Department of Applied Chemistry, Dongduk Women's University) ;
  • Nayeon Ko (Department of Applied Chemistry, Dongduk Women's University) ;
  • Su Hyun Oh (Department of Applied Chemistry, Dongduk Women's University) ;
  • Jeongyeon Oh (Department of Chemical Engineering, Hongik University) ;
  • Mijung Kim (Major of Health and Beauty, Graduate School of Public Health, Changwon University) ;
  • Jaeeun Lee (Department of Beauty Cosmetics, Osan University) ;
  • Taeshik Earmme (Department of Chemical Engineering, Hongik University) ;
  • Joonwon Bae (Department of Applied Chemistry, Dongduk Women's University)
  • 유진주 (동덕여자대학교 응용화학과) ;
  • 고나연 (동덕여자대학교 응용화학과) ;
  • 오수현 (동덕여자대학교 응용화학과) ;
  • 오정연 (홍익대학교 화학공학과) ;
  • 김미정 (창원대학교 보건대학원 뷰티헬스전공) ;
  • 이재은 (오산대학교 뷰티코스메틱계열) ;
  • 엄태식 (홍익대학교 화학공학과) ;
  • 배준원 (동덕여자대학교 응용화학과)
  • Received : 2023.08.11
  • Accepted : 2023.08.30
  • Published : 2023.10.10

Abstract

The fundamental electrochemical properties and adsorption capabilities of the carbonized product derived from coffee grounds, a prevalent form of lignocellulose abundantly generated in our daily lives, have been extensively investigated. The structure and morphology of the resultant carbonized product, obtained through a carbonization process conducted at a relatively low temperature of 600 ℃, were meticulously examined using a scanning electron microscope. Raman spectroscopy measurements yielded a relative crystallinity (D/G ratio) of the carbon product of 0.64. Electrical measurements revealed a linear ohmic relationship within the carbonized product. Furthermore, the viability of utilizing this carbonized material as an anode in lithium-ion batteries was evaluated through half-cell charge/discharge experiments, demonstrating an initial specific capacity of 520 mAh/g. Additionally, the adsorption performance of the carbon material towards a representative dye molecule was assessed via UV spectroscopy analyses. Supplementary experiments corroborated the material's ability to adsorb a distinct model molecule characterized by differing surface polarity, achieved through surface modification. This article presents pivotal findings that hold substantial implications for forthcoming research endeavors centered around the recycling of lignocellulose waste.

우리 일상에서 대량으로 생성되는 리그노셀룰로즈(lignocellulose) 물질인 커피 찌꺼기(coffee grounds)를 탄화하여 얻어지는 탄소 소재의 전기화학적 특성과 흡착 성능을 고찰하였다. 커피 찌꺼기를 섭씨 600도 정도의 상대적 저온에서 탄화하여 얻어지는 탄소의 형태적 구조를 주사전자현미경(scanning electron microscope, SEM)으로 고찰하였다. Raman 분석을 통하여 얻어진 탄소 재료의 결정성 정보를 얻었다. 기본적인 전기적 특성을 간단한 옴의 관계(Ohmic relation)를 통하여 확인하였다. 나아가, 탄화된 재료가 리튬 이차 전지의 음극(anode) 소재로 활용될 수 있는지 여부를 반쪽 전지(half-cell) 충방전(charge/discharge) 테스트를 통해 살펴보았으며, 초기 음극재의 비용량은 약 520 mAh/g으로 나타났다. 이어서, 커피 찌꺼기 탄화로 얻어진 탄소 소재의 다공성 구조로 인해 분자를 흡착할 수 있음을 자외선(ultraviolet, UV) 흡광도(absorption) 측정을 통해 확인하였다. 탄소 소재의 표면 개질을 통해 극성이 다른 분자들의 선택적으로 흡착할 수 있음을 추가로 확인하였다. 본 연구는 향후 목질계 폐기물의 활용에 대한 중요한 정보를 제공할 것이다.

Keywords

Acknowledgement

이 연구는 한국연구재단(NRF-2021R1F1A1061939)과 과학기술정보통신부(RS-2022-00154546)의 지원으로 수행되었습니다.

References

  1. C. Wongsiridetchai, W. Chiangkham, N. Khlaihiran, T. Sawangwan, P. Wongwathanarat, T. Charoenrat, and S. Chantorn, Alkaline pretreatment of spent coffee grounds for oligosaccharides production by mannanase from Bacillus sp. GA2(1), Agric. Nat. Resour., 52, 222-227 (2018).  https://doi.org/10.1016/j.anres.2018.09.012
  2. S. Tajik, P. Ziarati, and L. Cruz-Rodriguez, Coffee waste as novel bio-adsorbent: Detoxification of nickel from contaminated soil and Coriandrum Sativum, Methods, 38, 2693-2504 (2020). 
  3. J. McNutt and Q. (Sophia) He, Spent coffee grounds: A review on current utilization, J. Ind. Eng. Chem., 71, 78-88 (2019).  https://doi.org/10.1016/j.jiec.2018.11.054
  4. V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: A review, ACS Sustain. Chem. Eng., 2, 1072- 1092 (2014).  https://doi.org/10.1021/sc500087z
  5. F. Taleb, M. Ammar, and M. Mosbah, Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption, Sci. Rep., 10, 11048 (2020). 
  6. J. Y. Jeong, D. J. Lee, J. Heo, D. H. Lim, Y. G. Seo, J. H. Ahn, and C. H. Choi, Development of biomass-drived anode material for lithium-ion battery, Clean Technol., 26, 131-136 (2020). 
  7. M.-J. Kim, J. H. Choi, T. R. Choi, S. S. Choi, J. H. Ha, and Y. -S. Lee, Enhancement of manganese removal ability from water phase using biochar of Prinus densiflora bark, Appl. Chem. Eng., 31, 526-531 (2020). 
  8. Y.-J. Shin, D.-Y. Song, E.-J. Lee, and J.-W. Lee, Characteristics of biochar derived from lignocellulosic biomass and effect of adsorption of methylene blue, Appl. Chem. Eng., 34, 153-160 (2023). 
  9. H.-J. Choi, Applicability of composite beads, spent coffee grounds/chitosan, for the adsorptive removal of Pb(II) from aqueous solutions, Appl. Chem. Eng., 30, 536-545 (2019). 
  10. T. Sangprasert, V. Sattayarut, C. Rajrujithong, P. Khanchaitit, P. Khemthong, C. Chanthad, and N. Grisdanurak, Making use of the inherent nitrogen content of spent coffee grounds to create nanostructured activated carbon for supercapacitor and lithium-ion battery applications, Diam. Relat. Mater., 127, 109164 (2022). 
  11. Q. Xie, S. Qu, Y. Zhang, and P. Zhao, Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries, Appl. Surf. Sci., 537, 148092 (2021). 
  12. Y. J. Hwang, S. K. Jeong, K. S. Nahm, J. S. Shin, and A. M. Stephan, Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries, J. Phys. Chem. Solids, 68, 182-188 (2007).  https://doi.org/10.1016/j.jpcs.2006.10.007
  13. O.-N. Hur, S. Park, S. Park, B.-H. Kang, C.-S. Lee, J.-Y. Hong, S.-H. Park, and J. Bae, A study on fabrication of polypyrrole@lignin composite and electrical sensing and metal ion adsorption capabilities, Mater. Chem. Phys., 285 126166 (2022). 
  14. Z. Wen, C. Xu, X. Qian, Y. Zhang, X. Wang, S. Song, M. Dai, and C. Zhang, A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent, Appl. Surf. Sci., 486, 546-554 (2019). https://doi.org/10.1016/j.apsusc.2019.04.248