DOI QR코드

DOI QR Code

Effects of dietary trace mineral levels on physiological responses, reproductive performance, litter performance, blood profiles, and milk composition in gestating sows

  • Hong Jun Kim (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Xing Hao Jin (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Sun Woo Kang (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Yoo Yong Kim (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
  • Received : 2023.05.22
  • Accepted : 2023.07.19
  • Published : 2023.12.01

Abstract

Objective: This study was conducted to evaluate the effects of optimal trace mineral levels on the physiological responses, reproductive performance, litter performance, blood profiles and milk composition in gestating sows. Methods: A total of 59 multiparous sows (Yorkshire×Landrace) with similar body weight (BW), backfat thickness (BF), and parity were assigned to one of four treatments with 14 or 15 sows per treatment using a completely randomized design. The treatments were 100% (M1), 300% (M3), 600% (M6), and 900% (M9) of the National Research Council (NRC) Nutrient Requirements of Swine. During lactation period, all the sows were fed the same commercial lactation diet. Results: No significant differences were observed in the BW, BF, reproductive performance, milk composition, or growth performance of the piglets. On day 70 of gestation, the serum zinc concentration showed a quadratic response to M6 treatment (quadratic, p<0.05). Moreover, as the dietary mineral levels increased, the zinc concentration increased linearly at 110 days of gestation (linear, p<0.05). Furthermore, copper and iron concentrations in the serum of sows at 24 h postpartum decreased linearly when high levels of dietary minerals were provided (linear, p<0.05). In the serum of piglets, serum zinc concentrations decreased linearly (linear, p<0.05), and iron concentration showed a quadratic response (quadratic, p<0.05) with an increase in trace mineral premix levels in gestation diets. Conclusion: The current trace mineral requirements of NRC (2012) are suitable for gestating sows, and the addition of dietary mineral levels in the gestating diet did not show any improvements during the gestation and lactation periods.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (Project No. 321080-3), funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

References

  1. Nielsen FH. Ultratrace elements in nutrition. Annu Rev Nutr 1984;4;21-41. https://doi.org/10.1146/annurev.nu.04.070184.000321
  2. Crenshaw TD. Calcium, phosphorus, vitamin D, and vitamin K in swine nutrition. 2nd Edition. In: Lewis AJ, Southern LL, editors. Swine nutrition. Boca Raton, FL, USA: CRC Press; 2000. 
  3. Venn JAJ, McCance RA, Widdowson EM. Iron metabolism in piglet anemia. J Comp Pathol Ther 1947;57:314-25. https://doi.org/10.1016/S0368-1742(47)80037-2 
  4. Failla ML. Trace elements and host defense: recent advances and continuing challenges. J Nutri 2003;133:1443S-7S. https://doi.org/10.1093/jn/133.5.1443S 
  5. Smith OB, Akinbamijo OO. Micronutrients and reproduction in farm animals. Anim Reprod Sci 2000;60:549-60. https://doi.org/10.1016/S0378-4320(00)00114-7 
  6. McDowell LR. Minerals in animals and human nutrition. 2nd Edition. Amsterdam, The Netherlands: Elsevier Science BV; 2003. 144 p.
  7. Thompson LJ, Hall JO, Meerdink GL. Toxic effects of trace element excess. Vet Clin North Am Food Anim Pract 1991;7:277-306. https://doi.org/10.1016/s0749-0720(15)30818-5 
  8. Coelho MB. Vitamin stability in premixes and feeds: a practical approach. BASF Technical Symposium; Bloomington, MN, USA; 1991. 
  9. Lucas IAM, Calder AFC. Antibiotics and a high level of copper sulphate in rations for growing bacon pigs. J Agric Sci 1957;49:184-99. https://doi.org/10.1017/S0021859600036170 
  10. Mahan DC, Moxon AL, Cline JH. Efficacy of supplemental selenium in reproductive diets on sow and progeny serum and tissue selenium values. J Anim Sci 1975;40:624-31. https://doi.org/10.2527/jas1975.404624x 
  11. Payne RL, Bidner TD, Fakler TM, Southern LL. Growth and intestinal morphology of pigs from sows fed two zinc sources during gestation and lactation. J Anim Sci 2006;84:2141-9. https://doi.org/10.2527/jas.2005-627 
  12. Lu N. Long-term effects of dietary copper source and level on performance and health of sows and piglets. Theses and Dissertations--Animal and Food Sciences. 2018. No. 85. https://doi.org/10.13023/ETD.2018.060 
  13. Buffler M, Becker C, Windisch WM. Effects of different iron supply to pregnant sows (Sus scrofa domestica L.) on reproductive performance as well as iron status of new-born piglets. Arch Anim Nutr 2017;71:219-30. https://doi.org/10.1080/1745039X.2017.1301059 
  14. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 1985;65:238-309. https://doi.org/10.1152/physrev.1985.65.2.238 
  15. Barclay SM, Aggett PJ, Lloyd DJ, Duffy P. Reduced erythrocyte superoxide dismutase activity in low birth weight infants given iron supplements. Pediatr Res 1991;29:297-301. https://doi.org/10.1203/00006450-199103000-00015 
  16. Committee on Nutrient Requirements of Swine, National Research Council. Nutrient requirements of swine. 11th ed. Washington DC, USA: National Academy Press; 2012. 
  17. Latimer GW; AOAC International. Official methods of analysis of AOAC International. 19th ed. Gaithersburg, MD, USA: AOAC International; 2012. 
  18. SAS. SAS user's guide: statistics (Version 7 Ed.). Cary, NC, USA: SAS Inst. Inc.; 2004. 
  19. Peters JC, Mahan DC. Effects of dietary organic and inorganic trace mineral levels on sow reproductive performances and daily mineral intakes over six parities. J Anim Sci 2008;86:2247-60. https://doi.org/10.2527/jas.2007-0431 
  20. Davin R, Sola-Oriol D, Manzanilla EG, Kuhn I, Perez JF. Zn status of sows and piglets as affected by diet and sow parity. Livest Sci 2015;178:337-44. https://doi.org/10.1016/j.livsci.2015.05.003 
  21. Baidoo SK, Aherne FX, Kirkwood RN, Foxcroft GR. Effect of feed intake during lactation and after weaning on sow reproductive performance. Can J Anim Sci 1992:72:911-7. https://doi.org/10.4141/cjas92-103 
  22. King RH, Williams IH. The effect of nutrition on the reproductive performance of first litter sows. 2. Protein and energy intakes during lactation. Anim Prod 1984;38:249-56. https://doi.org/10.1017/S0003356100002245 
  23. Thacker PA. Effect of high levels of copper or dichlorvos during late gestation and lactation on sow productivity. Can J Anim Sci 1991;71:227-32. https://doi.org/10.4141/cjas91025 
  24. van Riet MMJ, Bos EJ, Ampe B, et al. Long-term impact of zinc supplementation in sows: Impact on zinc status biomarkers and performance. J Swine Health Prod 2018;26:7994. 
  25. Dove CR. The effect of adding copper and various fat sources to the diets of weanling swine on growth performance and serum fatty acid profiles. J Anim Sci 1993;71:2187-92. https://doi.org/10.2527/1993.7182187x 
  26. Roos MA, Easter RA. Effect on sow and piglet performance of feeding a diet containing 250 ppm copper during lactation. J Anim Sci 1986;63(Suppl. 1):115. 
  27. Holen JP, Urriola PE, Schwartz M, Jang JC, Shurson GC, Johnston LJ. Effects of supplementing late-gestation sow diets with zinc on preweaning mortality of pigs under commercial rearing conditions. Transl Anim Sci 2020;4:519-30. https://doi.org/10.1093/tas/txaa010 
  28. Hojgaard CK, Bruun TS, Theil PK. Impact of milk and nutrient intake of piglets and sow milk composition on piglet growth and body composition at weaning. J Anim Sci 2020;98:skaa060. https://doi.org/10.1093/jas/skaa060 
  29. Theil PK, Lauridsen C, Quesnel H. Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 2014;8:1021-30. https://doi.org/10.1017/S1751731114000950 
  30. Rapp C, Morales J. Effect of trace mineral type in sow diets on colostrum and milk composition and piglet growth rate. Journees de la Recherche Porcine en France 2018;50:145-6. 
  31. Kalinowski J, Chavez ER. Effect of low dietary zinc during late gestation and early lactation on the sow and neonatal piglets. Can J Anim Sci 1984;64:749-58. https://doi.org/10.4141/cjas84-083 
  32. Hill GM, Miller ER. Effect of dietary zinc levels on the growth and development of the gilt. J Anim Sci 1983;57:106-13. https://doi.org/10.2527/jas1983.571106x 
  33. Hill GM, Miller ER, Whetter PA, Ullrey DE. Concentration of minerals in tissues of pigs from dams fed different levels of dietary zinc. J Anim Sci 1983;57:130-8. https://doi.org/10.2527/jas1983.571130x 
  34. O Dell, Boyd L, Sunde RA. Handbook of nutritionally essential mineral elements. New York, USA: Marcel Dekker, Inc; 1997. 
  35. Hill GM. Minerals and mineral utilization in swine. In: Chiba LI, editor. Sustainable swine nutrition. Wiley Blackwell; 2022. https://doi.org/10.1002/9781119583998.ch8 
  36. Poulsen HD. Minerals for sows. Significance of main effects and interactions on performance and biochemical traits [PhD thesis]. Copenhagen, Denmark: The Royal Veterinary and Agricultural University; 1993. 
  37. Ji F, Wu G, Blanton Jr JR, Kim SW. Changes in weight and composition in various tissues of pregnant gilts and their nutritional implications. J Anim Sci 2005;83:366-75. https://doi.org/10.2527/2005.832366x 
  38. Theil PK. Transition feeding of sows: The gestating and lactating sow. Wageningen, The Netherlands: Wageningen Academic Publishers; 2015.