DOI QR코드

DOI QR Code

Compressive Strength Development of Concrete using Electric Arc Furnace Oxidizing Slag Aggregates

전기로 산화슬래그 골재 콘크리트의 압축강도 발현 특성

  • 정기태 (경기대 건축공학과) ;
  • 양근혁 (경기대 건축공학과) ;
  • 김도범 (엔아이스틸 R&D LAB) ;
  • 이동섭 (포스코 철강솔루션 R&D센터 구조연구그룹)
  • Received : 2023.08.10
  • Accepted : 2023.09.14
  • Published : 2023.10.30

Abstract

This study examined the compressive strength development of concrete using electric arc furnace oxidizing (EAFO) slag particles as a coarse aggregate. The main parameters considered were water-to-binder (W/B) ratio, maximum size of aggregates, and curing temperature (T). The test results showed that the 28-day compressive strength [fc(28)] of EAFO slag aggregate concrete was commonly lower than the conventional concrete using natural aggregates with the same W/B ratio, indicating greater differences under T of 5 ℃ and 35 ℃ than under T of 20 ℃. Additionally, a lower decreasing rate of fc(28) with respect to the increase in W/B ratio was observed for EAFO slag aggregate concrete than for the conventional concrete using natural aggregates. No crossover effect was observed for EAFO slag aggregate concrete cured under the different temperatures. The previous models formulated from equivalent age method were not reasonable in assessing the compressive strength development of EAFO slag aggregate concrete. Therefore, this study modified the parameter explaining the compressive strength gain rate specified in KDS 14 20 to assess the effect of curing temperature on the strength gain rate of EAFO slag aggregate concrete.

Keywords

Acknowledgement

이 연구는 2022년도 철강융합신기술연구조합의 연구사업지원에 의해 수행되었습니다.

References

  1. Choi, D.W. (2016). Concrete & Environment, Seoul, Kimundang, 139-164. 
  2. Kim, J.M., & Park, H.I. (2012). Properties of Steel Slag Aggregate for Concrete, Magazine of Korea Concrete Institute, 24(6), 35-38. 
  3. Ryu, D.H., Lim, J. Y., Lee, Y.J., Kim, S.W., & Kim, K.H. (2009 a). Experimental Study on the Bond Capacity of RC Beams using Electric Arc Furnace Oxidizing Slag Aggregates, Journal of the Korea Concrete Institute, 21(5), 581-588.  https://doi.org/10.4334/JKCI.2009.21.5.581
  4. Cho, B.S., Lee, H.H., Yang, S.K., Lee, W.J., & Um, T.S. (2009). Appraisal of Concrete Performance and Plan for Stable Use of EAF Oxidizing Slag as Fine Aggregate of Concrete, 21(3), 367-375. 
  5. Jung, Y.J., Lee, Y.H., Kim, S.W., & Kim, K.H. (2012). Flexural Behavior of Reinforced Concrete Columns using Electric Arc Furnace Oxidizing Slag Aggregates. Journal of the Korea Concrete Institute, 24(3), 267-273.  https://doi.org/10.4334/JKCI.2012.24.3.267
  6. Kim, S.W., Lee, J.M., Lee, Y.J., Jung, Y.J., & Kim, K.H. (2011). Experimental Study on Behavior of Confined Concrete with Electric Arc Furnace Oxidizing Slag Aggregates. Journal of the Korea Concrete Institute, 23(2), 195-201.  https://doi.org/10.4334/JKCI.2011.23.2.195
  7. Kwak, E.G., & Kim, J.M. (2010). Evaluation of Application for the Concrete Aggregate of Electric Arc Furnace Oxidizing Slag Treated by Rapidly Cooling Method, Journal of the Architectural Institute of Korea, 26(2), 63-70. 
  8. Lim, H.S., Lee, H.S., & Choi, J.S. (2011). Experimental Study on the Development of X-Ray Shielding Concrete Utilizing Electronic Arc Furnace Oxidizing Slag, Journal of the Architectural Institute of Korea, 27(7), 125-132. 
  9. Korea Standard Association (2007). Electric Arc Furnace Oxidizing Slag Aggregate for Concrete (KS F 4571). 
  10. Korea Standard Association (2022). Aggregates for Concrete (KS F 2527). 
  11. Ryu, D.H., Kim, K.H., Park, C.G., & Son, Y.S. (2009 b). The Study of Concrete Basic Properties Using Oxidized Electric-Furnace-Slag Aggregate, Journal of the Architectural Institute of Korea, 25(8), 143-150. 
  12. Mun, J.S. (2016). Generalized Model for Compressive Strength Development of Concrete considering the Addition of Supplementary Cementitious Materials and Curing Temperatures, Ph.D. Dissertation, Kyonggi University.
  13. Pinto, R. C. A., & Schindler, A. K. (2010). Unified Modeling of Setting and Strength Development, Cement and Concrete Research, 40(1), 58-65.  https://doi.org/10.1016/j.cemconres.2009.08.010
  14. Kim, J. K., Han, S. J., & Park, S. K. (2002). Effect of Temperature and Aging on the Mechanical Properties of Concrete. Part II. Prediction Model. Cement and Concrete Research, 32(7), 1095-1100.  https://doi.org/10.1016/S0008-8846(02)00745-7
  15. KDS 14 20. (2021). Design Code for Concrete Structures, Korea Concrete Institute, Seoul. 
  16. Korea Standard Association (2022). Test Method for Concrete Slump (KS F 2402). 
  17. Korea Standard Association (2021). Standard Test Method for Air Content of Fresh Concrete by the Pressure Method (KS F 2421). 
  18. Korea Standard Association (2022). Test Method for Compressive Strength of Concrete (KS F 2405). 
  19. Kim, D.H., Yoo, Y.J., Lee, S.S., Song, H.Y., & Kim, E.Y. (2011). An Experimental Study on Relation between Compressive Strength and Shear Wave Velocity for Characteristics of Coarse Aggregate Size and Type of Cement, International journal of highway engineering, 13(1), 169-175.  https://doi.org/10.7855/IJHE.2011.13.1.169
  20. Yang, K.H., Jung, Y.B., Cho, M.S., & Tae, S.H. (2015). Effect of Supplementary Cementitious Materials on Reduction of CO2 Emissions from Concrete, Journal of Cleaner Production, 103, 774-783.  https://doi.org/10.1016/j.jclepro.2014.03.018
  21. Lee, C.H., Oh, B.J., Kim, J.H., & Ann, K.Y. (2018). PC Structures Application Technology by using Ferro-nickel Slag Blended Cement, Magazine of Korea Concrete Institute, 30(3), 59-65. 
  22. Neville, A.M. (2011). Properties of Concrete, John Wiley &Sons, Inc., New York, 849. 
  23. Han, M.C. (2017). Effect of Curing Temperature on the Autogenous Shrinkage of High Strength Mortar Using Electric Oxidizing Arc Slag, Journal of the Regional Association of Architectural Institute of Korea, 19(6), 189-196.