DOI QR코드

DOI QR Code

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Ahmad Moussavi (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Masoome Zahiri (Department of Pure Mathematics Faculty of Mathematical Sciences Eqlid University)
  • Received : 2022.12.20
  • Accepted : 2023.09.01
  • Published : 2023.11.01

Abstract

We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

Keywords

References

  1. F. Azarpanah, O. A. S. Karamzadeh, and R. A. Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra 28 (2000), no. 2, 1061-1073. https://doi.org/10.1080/00927870008826878
  2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. https://doi.org/10.2307/1993568
  3. G. F. Birkenmeier, H. E. Heatherly, and E. K. S. Lee, Completely prime ideals and associated radicals, in Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  4. V. Camillo, C. Y. Hong, N. K. Kim, Y. Lee, and P. P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1607-1619. https://doi.org/10.1090/S0002-9939-10-10252-4
  5. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  6. F. Ced'o, Zip rings and Mal'cev domains, Comm. Algebra 19 (1991), no. 7, 1983-1991. https://doi.org/10.1080/00927879108824242
  7. J. Chen, X. Yang, and Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra 34 (2006), no. 10, 3659-3674. https://doi.org/10.1080/00927870600860791
  8. R. C. Courter, Finite-dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84 (1982), no. 2, 157-161. https://doi.org/10.2307/2043655
  9. M. P. Drazin, Rings with central idempotent or nilpotent elements, Proc. Amer. Math. Soc. 27 (1971), no. 3, 427-433. https://doi.org/10.1090/S0002-9939-1971-0271100-6
  10. C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892. https://doi.org/10.1080/00927879108824235
  11. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.2307/1993133
  12. D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427-433. https://doi.org/10.2307/2036469
  13. M. Habibi, A. Moussavi, and A. Alhevaz, The McCoy condition on Ore extensions, Comm. Algebra 41 (2013), no. 1, 124-141. https://doi.org/10.1080/00927872.2011.623289
  14. E. Hashemi, Extensions of zip rings, Studia Sci. Math. Hungar. 47 (2010), no. 4, 522-528. https://doi.org/10.1556/SScMath.2009.1148
  15. M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.2307/1994260
  16. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  17. Y. Hirano, D. V. Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel) 66 (1996), no. 5, 360-365. https://doi.org/10.1007/BF01781553
  18. C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242. https://doi.org/10.1016/j.jpaa.2004.08.025
  19. C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their extensions, J. Algebra 315 (2007), no. 2, 612-628. https://doi.org/10.1016/j.jalgebra.2007.01.042
  20. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  21. S. U. Hwang, N. K. Kim, and Y. Lee, On rings whose right annihilators are bounded, Glasg. Math. J. 51 (2009), no. 3, 539-559. https://doi.org/10.1017/S0017089509005163
  22. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
  23. T. Y. Lam, A First Course in Noncommutative Rings, second edition, Graduate Texts in Mathematics, 131, Springer, New York, 2001. https://doi.org/10.1007/978-1-4419-8616-0
  24. Z. Lei, J. Chen, and Z. Ying, A question on McCoy rings, Bull. Austral. Math. Soc. 76 (2007), no. 1, 137-141. https://doi.org/10.1017/S0004972700039526
  25. T. G. Lucas, Two annihilator conditions: property (A) and (A.C.), Comm. Algebra 14 (1986), no. 3, 557-580. https://doi.org/10.1080/00927878608823325
  26. G. Marks, Duo rings and Ore extensions, J. Algebra 280 (2004), no. 2, 463-471. https://doi.org/10.1016/j.jalgebra.2004.04.018
  27. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  28. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  29. W. M. Xue, On weakly left duo rings, Riv. Mat. Univ. Parma (4) 15 (1989), 211-217.
  30. H.-P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), no. 1, 21-31. https://doi.org/10.1017/S0017089500030342
  31. M. Zahiri, A. Moussavi, and R. Mohammadi, On rings with annihilator condition, Studia Sci. Math. Hungar. 54 (2017), no. 1, 82-96. https://doi.org/10.1556/012.2017.54.1.1355
  32. M. Zahiri, A. Moussavi, and R. Mohammadi, On annihilator ideals in skew polynomial rings, Bull. Iranian Math. Soc. 43 (2017), no. 5, 1017-1036.
  33. J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216. https://doi.org/10.2307/2041191