DOI QR코드

DOI QR Code

Uplift capacity and failure mechanism for belled pile embedded in soft-rock ground

  • Gyeong-o Kang (Department of Civil Engineering, Gwangju University) ;
  • Young-sang Kim (Department of Civil Engineering, Chonnam National University) ;
  • Jaehong Kim (Department of Civil Engineering, Dongshin University) ;
  • Jung-goo Kang (Department of Civil Engineering, Gwangju University)
  • Received : 2023.07.11
  • Accepted : 2023.10.10
  • Published : 2023.11.10

Abstract

This study aims to investigate the failure mechanism and uplift capacity of a belled pile embedded in soft rock. The laboratory model test for evaluating the uplift capacity of a belled pile at the circular chamber was conducted for two belled angles (0° and 12°) and penetration depths (160 mm and 80 mm) under the same strength condition on soft-rock ground. In addition, to investigate the failure mechanism of the belled pile, the failure behavior of the belled pile embedded in soft-rock ground was analyzed under different conditions of the belled angle (12° and 30°) and strength at the soft-rock ground (0.3 MPa and 1 MPa) via image analysis in a half-circular chamber. A higher belled angle and ground strength resulted in a higher uplift capacity under the same penetration depth. In addition, the uplift capacity under the same belled angle and ground strength increased with penetration depth. For the image analysis, the shape of the failure surface was an inverted cone regardless of the test conditions. In addition, the failure mechanism was observed in three stages: (a) static, (b) compression, and (c) formation of the failure surface. A new predictive model for the uplift capacity of the belled pile applicable to the soft-rock ground was proposed based on the result. In addition, the predicted value was in good agreement with the measured value. Therefore, this model can be very useful for estimating the uplift capacity of a belled pile embedded in soft-rock ground.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C2004070) and the research funds from Gwangju University in 2023.

References

  1. Aksoy, H.S., Gor, M. and Inal, E. (2016), "A new design chart for estimating friction angle between soil and pile materials", Geomech. Eng., 10(3), 315-324. http://dx.doi.org/10.12989/gae.2016.10.3.315.
  2. Ali, O.K. and Abbas, H.O. (2019), "Performance assessment of screw piles embedded in soft clay", Civ. Eng. J., 5, 1788-1798. http://dx.doi.org/10.28991/cej-2019-03091371.
  3. Balla, A. (1961), "The resistance to breaking-out of mushroom foundations for pylons", Proceedings of the 5th. Int. Conf. on SMFE, 1, 569-576.
  4. Basha, A. and Azzam, W.R. (2018), "Uplift capacity of single pile embedded in partially submerged sand", KSCE J. Civ. Eng., 22, 4882-4890. https://link.springer.com/article/10.1007/s12205-017-1715-2.
  5. Cerfontaine, B., Knappett, J.A., Brown, M.J. and Bradshaw, A.S. (2019), "Effect of soil deformability on the failure mechanism of shallow plate or screw anchors in sand", Comput. Geotech., 109, 34-45. https://doi.org/10.1016/j.compgeo.2019.01.007.
  6. Chae, D., Cho, W. and Na, H.Y. (2012), "Uplift capacity of belled pile in weathered sandstones" Int. J. Offshore Polar Eng., 22(4), 297-305. https://onepetro.org/IJOPE/article-abstract/35536/Uplift-Capacity-of-Belled-Pile-In-Weathered.
  7. Chaly, A., Hanna, A. and Hanna, M. (1991), "Uplift behavior of screw anchors in sand" Asce J. Geotech. Eng., 117(5).
  8. Cheng, P., Guo, J., Yao, K. and Chen, X. (2022), "Numerical investigation on pullout capacity of helical piles under combined loading in spatially random clay", Mar. Georesour. Geotech., 1-14. https://doi.org/10.1080/1064119X.2022.2120843.
  9. Das, B.M., Seeley, G.R. and Pfeifle, T.W. (1977). "Pullout resistance of rough rigid piles in granular soil", Soils Found., 17(3), 72-77. https://doi.org/10.3208/sandf1972.17.3_72.
  10. Das, B.M. (1983), "A procedure for estimation of uplift capacity of rough piles", Soils Found., 23(3), 122-126. https://doi.org/10.3208/sandf1972.23.3_122.
  11. Dash, B.K. and Pise, P.J. (2003), "Effect of compressive load on uplift capacity of model piles", J. Geotech. Geoenviron. Eng., 129(11), 987-992. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(987).
  12. Dickin, E.A. and Leung, C.F. (1990), "Performance of piles with enlarged bases subject to uplift forces", Can. Geotech. J., 27(5), 546-556. https://doi.org/10.1139/t90-070.
  13. Downs, D.I. and Chieurzzi, R. (1966), "Transmission tower foundations", J. Power Div., 92(2), 91-114. https://doi.org/10.1061/JPWEAM.0000518.
  14. Emirler, B., Tolun, M. and Laman, M. (2016), "Experimental investigation of the uplift capacity of group anchor plates embedded in sand", Geomech. Eng., 11(5), 691-711. http://dx.doi.org/10.12989/gae.2016.11.5.691.
  15. Faizi, K., Armaghani, D.J., Sohaei, H., Rashid, A.S.A. and Nazir, R. (2015), "Deformation model of sand around short piles under pullout test", Measurement, 63, 110-119. https://doi.org/10.1016/j.measurement.2014.11.028.
  16. Hirai, Y., Wakai, S. and Aoki, M. (2016), "In-situ pull-out tests of cast-in-place concrete piles with belled enlargements", Jpn. Geotech. Soc. Spec. Publ., 2(41), 1478-1481. https://doi.org/10.3208/jgssp.JPN-012.
  17. Honda, T. (2015), "Distinct element analysis on uplift resistance of belled and multi-belled piles in layered ground" Proceedings of the TC105 ISSMGE Int. Symp. on Geomechanics from Micro to Macro.
  18. Hu, Z., Qu, S., Wang, Q., Guo, Y., Ji, Y. and Ma, J. (2023), "Pullout behaviour of belled piles under axial and oblique pull in soil-rock composite ground: An experimental study", Int. J. Civ. Eng., 21(4), 569-582. https://link.springer.com/article/10.1007/s40999-022-00778-1.
  19. Ilamparuthi, K. and Dickin, E.A. (2001), "The influence of soil reinforcement on the uplift behaviour of belled piles embedded in sand", Geotext. Geomembranes., 19(1), 1-22. https://doi.org/10.1016/S0266-1144(00)00010-8.
  20. Ilamparuthi, K. and Muthukrishnaiah, K. (1999), "Anchors in sand bed: delineation of rupture surface", Ocean. Eng., 26(12), 1249-1273. https://doi.org/10.1016/S0029-8018(98)00034-1.
  21. Ilamparuthi, K., Dickin, E.A. and Muthukrisnaiah, K. (2002), "Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand", Can. Geotech. J., 39(3), 648-664. https://doi.org/10.1139/t02-005.
  22. JIS, R. (2009), 5210: Portland Cement. Japanese Stand. Assoc. Tokyo, Japan.
  23. Johnson, S.M. and Kavanagh, C.T. (1968), The design of foundations for buildings, McGraw-Hill Book Company, New York, USA.
  24. Kishida, H. (1963), "Stress distribution by model piles in sand", Soils Found., 4(1), 1-23. https://doi.org/10.3208/sandf1960.4.1.
  25. Kranthikumar, A., Sawant, V.A., Kumar, P. and Shukla, S.K. (2017), "Numerical and experimental investigations of granular anchor piles in loose sandy soil subjected to uplift loading", Int. J. Geomech., 17(2), 4016059. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000733.
  26. Leshchinsky, D., Vahedifard, F. and Meehan, C.L. (2012), "Application of a hydraulic gradient technique for modeling the uplift behavior of piles in sand", Geotech. Test. J., 35(3), 400-408. 10.1520/GTJ103850.
  27. Lin, J.G., Hsu, S.Y. and Lin, S.S. (2015), "The new method to evaluate the uplift capacity of belled piles in sandy soil", J. Mar. Sci. Technol., 23(4), 523-533. https://doi.org/10.6119/JMST015-0511-2.
  28. Lin, Y., Xiao, J., Le, C., Zhang, P., Chen, Q. and Ding, H. (2022), "Bearing characteristics of helical pile foundations for offshore wind turbines in sandy soil", J. Mar. Sci. Eng., 10(7), 889. https://doi.org/10.3390/jmse10070889.
  29. Maeno, Y., Takatani, T., Takahashi, S. and Shimosako, K. (1997), "On Application of Pile with Expanding End to Offshore Structure", Proceedings of the civil engineering in the ocean, Japan Society of Civil Engineers, 13, 399-404. https://doi.org/10.2208/prooe.13.399.
  30. Majer, J. (1955), "Zur berechnung von zugfundamenten", Osterr. Bauzeitschrift., 10(5), 85-90.
  31. Matsuo, M. (1967), "Study on the uplift resistance of footing (I)", Soils Found., 7(4), 1-37. https://doi.org/10.3208/sandf1960.7.4_1.
  32. Matsuo, M. (1968), "Study on the uplift resistance of footing (II)", Soils Found., 8(1), 18-48. https://doi.org/10.3208/sandf1960.8.18.
  33. Merifield, R.S. (2011), "Ultimate uplift capacity of multiplate helical type anchors in clay", J. Geotech. Geoenviron. Eng., 137(7), 704-716. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000478.
  34. Meyerhof, G.G. (1973), "Uplift resistance of inclined anchors and piles", Proceedings of the 8th ICSMFE, 2, 167-172.
  35. Meyerhof, G.G. and Adams, J.I. (1968), "The ultimate uplift capacity of foundations", Can. Geotech. J., 5(4), 225-244. https://doi.org/10.1139/t68-024.
  36. Moayedi, H. and Mosallanezhad, M. (2017), "Uplift resistance of belled and multi-belled piles in loose sand", Measurement, 109, 346-353. https://doi.org/10.1016/j.measurement.2017.06.001.
  37. Mohajerani, A., Bosnjak, D. and Bromwich, D. (2016), "Analysis and design methods of screw piles: A review", Soils Found., 56(1), 115-128. https://doi.org/10.1016/j.sandf.2016.01.009.
  38. Mosallanezhad, M. and Moayedi, H. (2017), "Developing hybrid artificial neural network model for predicting uplift resistance of screw piles", Arab. J. Geosci., 10(22), 479. https://link.springer.com/article/10.1007/s12517-017-3285-5.
  39. Murray, E.J. and Geddes, J.D. (1987), "Uplift of anchor plates in sand", J. Geotech. Eng., 113(3), 202-215. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(202).
  40. Ovesen, N. K. (1981), "Centrifuge tests to determine the uplift capacity of anchor slabs in sand", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden.
  41. Perumalsamy, K. and Ranganathan, S. (2022), "Single pile in cohesionless soil in sloping ground under lateral loading", Int. J. Geoeng., 13(1), 8. https://doi.org/10.1186/s40703-022-00173-8.
  42. Prakash A.R. and Muthukkumaran, K. (2021), "Estimation of lateral capacity of rock socketed piles in layered soil rock profile", Int. J. Geoeng., 12(11), 1-15. https://doi.org/10.1186/s40703-021-00140-9.
  43. Qian, Z., Lu, X., Han, X. and Tong, R. (2015), "Interpretation of uplift load tests on belled piers in Gobi gravel", Can. Geotech. J., 52(7), 992-998. https://doi.org/10.1139/cgj-2014-0075.
  44. Rao, S.N., Latha, K.H., Pallavi, B. and Surendran, S. (2006), "Studies on pullout capacity of anchors in marine clays for mooring systems", Appl. Ocean Res., 28(2), 103-111. https://doi.org/10.1016/j.apor.2006.08.001.
  45. Robinsky, E.I. and Morrison, C.F. (1964), "Sand displacement and compaction around model friction piles", Can. Geotech. J., 1(2), 81-93. https://doi.org/10.1139/t64-002.
  46. Roy, A., Chow, S.H., O'Loughlin, C.D. and Randolph, M.F. (2021), "Towards a simple and reliable method for calculating uplift capacity of plate anchors in sand", Can. Geotech. J., 58(9), 1314-1333. https://doi.org/10.1139/cgj-2020-028.
  47. Sakr, M., Nazir, A., Azzam, W. and Sallam, A. (2020), "Model study of single pile with wings under uplift loads", Appl. Ocean Res., 100, 102187. https://doi.org/10.1016/j.apor.2020.102187.
  48. Santos Filho, J.M.D. and Tsuha, C.D.H.C. (2020), "Uplift performance of helical piles with cement injection in residual soils", Can. Geotech. J., 57(9), 1335-1355. https://doi.org/10.1139/cgj-2019-0317.
  49. Sharif, Y.U., Brown, M.J., Cerfontaine, B., Davidson, C., Ciantia, M.O., Knappett, J.A., Ball, J.D., Brennan, A., Augarde, C. and Coombs, W. (2021), "Effects of screw pile installation on installation requirements and in-service performance using the discrete element method", Can. Geotech. J., 58(9), 1334-1350. https://doi.org/10.1139/cgj-2020-0241.
  50. Spagnoli, G. and de Hollanda Cavalcanti Tsuha, C. (2020), "A review on the behavior of helical piles as a potential offshore foundation system", Mar. Georesour. Geotechnol., 38(9), 1013-1036. https://doi.org/10.1080/1064119X.2020.1729905.
  51. Spagnoli, G., Gavin, K., Brangan, C. and Bauer, S. (2015), "In situ and laboratory tests in dense sand investigating the helix-to-shaft ratio of helical piles as a novel offshore foundation system", Front. Offshore Geotech., 3, 643-648. https://doi.org/10.1201/b18442-85
  52. Tsuha, C. de H.C., Aoki, N., Rault, G., Thorel, L. and Garnier, J. (2012), "Evaluation of the efficiencies of helical anchor plates in sand by centrifuge model tests", Can. Geotech. J., 49(9), 1102-1114. https://doi.org/10.1139/t2012-064.
  53. Ukritchon, B. and Keawsawasvong, S. (2019), "Design equations of uplift capacity of circular piles in sands", Appl. Ocean Res., 90, 101844. https://doi.org/10.1016/j.apor.2019.06.001.
  54. Vashishtha, H.R. and Sawant, V.A. (2021), "An experimental investigation for pullout response of a single granular pile anchor in clayey soil", Int. J. Geoeng., 12(35), 1-19. https://doi.org/10.1186/s40703-021-00162-3.
  55. Vignesh, V. and Muthukumar, M. (2023), "Experimental and numerical study of group effect on the behavior of helical piles in soft clays under uplift and lateral loading", Ocean Eng., 268, 113500. https://doi.org/10.1016/j.oceaneng.2022.113500.
  56. Wang, Q., Ma, J., Xiao, Z., Chen, W. and Ji, Y. (2020), "Field test on uplift bearing capacity of rock-socketed belled piles", KSCE J. Civ. Eng., 24(8), 2353-2363. https://doi.org/10.1007/s12205-020-2011-0.
  57. Yamazaki, M. (1995), "Effect of underreamed end shapes on the structural strength of cast-in-place concrete pile ends", J. Struct. Constr. Eng., 470, 95-103. https://doi.org/10.3130/aijs.60.95_1
  58. Yang, B., Ma, J., Chen, W. and Yang, Y. (2018), "Uplift behavior of belled short piles in weathered sandstone", Math. Probl. Eng., 2018, 8614172. https://doi.org/10.1155/2018/8614172.