DOI QR코드

DOI QR Code

Modification of direct shear apparatus for soil-soil and soil-solid interface testing

  • Muhammad Naqeeb Nawaz (Department of Civil Engineering, Sunchon National University) ;
  • Seung-Hun Lee (Department of Civil Engineering, Sunchon National University) ;
  • Song-Hun Chong (Department of Civil Engineering, Sunchon National University) ;
  • Jae-Hong Kim (Department of Civil and Environmental Engineering, Dongshin University)
  • Received : 2023.04.27
  • Accepted : 2023.10.30
  • Published : 2023.11.10

Abstract

The conventional direct shear apparatus has been widely used to analyze the shear behavior of the soil-soil and soil-solid interfaces. However, it has certain limitations, such as tilting of loading plate and rotation of upper shear box, which eventually lead to unfavorable shear responses and hinder the evaluation of accurate shear strength parameters. Therefore, in this study the direct shear apparatus is modified as follows: (1) application of constant vertical stress through a loading rod fixed to a circular loading plate for soil-soil tests and rectangular loading plate for interface testing; and (2) a provision of linear motion (LM) guide for smooth horizontal movement of shear box during shearing process and construction of upper and lower shear boxes for soil-solid interface testing. The modified direct shear apparatus is tested with soil-soil at different initial relative densities and interface testing using solid plate under three vertical stresses. The experimental results confirm that the vertical stress, which is imposed through the new loading system, remains constant during the shearing phase. Further analysis is conducted to establish the empirical relation of friction angle as a function of initial relative density.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1006003).

References

  1. ASTM D4253-00 (2006), Standard test methods for maximum index density and unit weight of soils using a vibratory table, American Society for Testing and Materials. West Conshohocken, PA. https://doi.org/10.1520/D4253-16.
  2. ASTM D4254-00 (2006), Standard test methods for minimum index density and unit weight of soils and calculation of relative density, American Society for Testing and Materials. West Conshohocken, PA. https://doi.org/10.1520/D4254-16.
  3. Bak, H.M., Kariminia, T., Shahbodagh, B., Rowshanzamir, M.A. and Khoshghalb, A. (2021), "Application of bio-cementation to enhance shear strength parameters of soil-steel interface", Constr. Build. Mater., 294, 123470. https://doi.org/10.1016/j.conbuildmat.2021.123470.
  4. Chong, S.H. (2014), "The effect of subsurface mass loss on the response of shallow foundations", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta.
  5. Ilori, A.O., Udoh, N.E. and Umenge, J.I. (2017), "Determination of soil shear properties on a soil to concrete interface using a direct shear box apparatus", Int. J. Geo-Eng., 8(1), 17. https://doi.org/10.1186/s40703-017-0055-x.
  6. Jewell, R.A. (1989), "Direct shear tests on sand", Geotechnique, 39(2), 309-322. https://doi.org/10.1680/geot.1989.39.2.309.
  7. Jewell, R.A. and Wroth, C.P. (1987), "Direct shear tests on reinforced sand", Geotechnique, 37(1), 53-68. https://doi.org/10.1680/geot.1987.37.1.53.
  8. Kim, B.S., Shibuya, S., Park, S.W. and Kato, S. (2012), "Effect of opening on the shear behavior of granular materials in direct shear test", KSCE J. Civil Eng., 16(7), 1132-1142. https://doi.org/10.1007/s12205-012-1518-4.
  9. Kim, B.S. (2021), "Establishing an opening size criterion in direct shear test using DEM simulation", Geomech. Eng., 26(2), 147-160. https://doi.org/10.12989/gae.2021.26.2.147.
  10. Kodicherla, S.P.K. (2023), "Discrete element modelling of granular materials incorporating realistic particle shapes", Int. J Geo-Eng., 14(1), 15. https://doi.org/10.1186/s40703-023-00193-y.
  11. Lee, J.S., Han, W., Kim, S.Y. and Byun, Y.H. (2020), "Shear strength and interface friction characteristics of expandable foam grout", Constr. Build. Mater., 249, 118719. https://doi.org/10.1016/j.conbuildmat.2020.118719.
  12. Lee, S.H., Nawaz, M.N. and Chong, S.H. (2023), "Estimation of interface frictional anisotropy between sand and snakeskin-inspired surfaces", Scientific Reports, 13(1), 3975. https://doi.org/10.1038/s41598-023-31047-3.
  13. Lee, S.H. and Chong, S.H. (2022), "A study on friction anisotropy between sand and surface asperities of plate using modified direct shear test", J. Korean Geotech. Soc., 38(2), 29-38. https://doi.org/10.7843/kgs.2022.38.2.29.
  14. Lings, M. L. and Dietz, M.S. (2004), "An improved direct shear apparatus for sand", Geotechnique, 54(4), 245-256. https://doi.org/10.1680/geot.2004.54.4.245.
  15. Lings, M.L. and Dietz, M.S. (2005), "The peak strength of sand-steel interfaces and the role of dilation", Soils Found., 45(6), 1=14. https://doi.org/10.3208/sandf.45.1.
  16. Mikasa, M. (1960), "New direct shear test apparatus", Proceedings of the 5th Annual Meeting, JSCE, Tokyo, Japan, 45-48. (In Japanese).
  17. Mohammadi, A., Ebadi, T. and Boroomand, M.R. (2020), "Interface shear between different oil-contaminated sand and construction materials", Geomech. Eng., 20(4), 299-312. https://doi.org/10.12989/gae.2020.20.4.299.
  18. Park, L.K., Suneel, M. and Chul, I.J. (2008), "Shear strength of Jumunjin sand according to relative density", Mar. Georesour. Geotech., 26(2), 101-110. https://doi.org/10.1080/10641190802022445.
  19. Park, S., Hwang, C., Choi, H., Son, Y. and Ko, T.Y. (2022), "Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface", Geomech. Eng., 29(3), 281-290. https://doi.org/10.12989/gae.2022.29.3.281.
  20. Salgado, R., Bandini, P. and Karim, A. (2000), "Shear strength and stiffness of silty sand", J. Gotech. Geoenviron.Eng., 126(5), 451-462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
  21. Skempton, A.W. and Bishop, A.W. (1950), "The measurement of the shear strength of soils", Geotechnique, 2(2), 90-108. Thomas Telford Ltd. https://doi.org/10.1680/geot.1950.2.2.90.
  22. Yang, P., Xue, S.B., Song, L. and Duan, M.S. (2018). "Interface shear characteristics of dredger fill and concrete using large size direct shear test", Int.l J. Geo-Engineering, 9(1), 12. https://doi.org/10.1186/s40703-018-0081-3.