DOI QR코드

DOI QR Code

Mibyeong, Prodromal Parkinson's Disease, and Dopaminergic Circadian Rhythm Impairment

도파민 일주기 리듬 손상과 미병, 파킨슨병 전구기 증상의 연관성에 관한 고찰

  • Miso Park (Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University) ;
  • Wangjung Hur (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Junghyo Cho (Department of Hepatology and Hematology of Korean Medicine, College of Korean Medicine, Daejeon University) ;
  • Seong-Il Park (Dr. Park Seong-Il Clinic) ;
  • Horyong Yoo (Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University)
  • 박미소 (대전대학교 대전한방병원 임상시험센터) ;
  • 허왕정 (대전대학교 한의학과 심계내과학교실) ;
  • 조정효 (대전대학교 한의학과 간계내과학교실) ;
  • 박성일 (박성일한의원) ;
  • 류호룡 (대전대학교 한의학과 심계내과학교실)
  • Received : 2023.06.23
  • Accepted : 2023.08.29
  • Published : 2023.10.25

Abstract

Awareness of Mibyeong, a key concept in preventive Korean medicine, leads to preventive health care by focusing on clinical symptoms and risk factors that appear before disease, as well as improving health by changing one's circadian rhythm and lifestyle. Parkinson's disease motor symptoms, such as bradykinesia, tremor, rigidity, and postural instability, appear after more than half of the dopaminergic neurons in the substantia nigra are lost. Non-motor symptoms such as hyposmia, sleep disturbance, depression, fatigue, and foveal visual impairment, on the other hand, appear from the prodromal stage of Parkinson's disease. Dopamine is secreted in different areas of the brain under circadian control and is known to interact closely with circadian clock genes. The loss of normal dopaminergic rhythm in the midbrain, striatum, retina, and olfactory bulbs has recently been linked to Parkinson's disease non-motor symptoms such as circadian disruption, REM sleep behavior disorder, foveal vision loss, and hyposmia. Furthermore, circadian disruption is linked to several pathological mechanisms of Parkinson's disease, hastening disease progression. There is a growing awareness that early diagnosis and preventive measures of Parkinson's disease should be prioritized. Parkinson's disease must be prevented at the prodromal stage through increased awareness and active preventive treatment.

Keywords

Acknowledgement

본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술연구개발사업 지원에 의하여 이루어진 것임 (과제고유번호: HF20C0174).

References

  1. Lee JE, Choi JK, Lim HS et al. The prevalence and incidence of Parkinson's disease in South Korea: a 10-year nationwide population-based study. J Korean Neurol Assoc. 2017;35(4):191-8.  https://doi.org/10.17340/jkna.2017.4.1
  2. Park JH, Kim DH, Kwon DY et al. Trends in the incidence and prevalence of Parkinson's disease in Korea: a nationwide, population-based study. BMC Geriatr. 2019;19(1):1-0. 
  3. Olanow CW, Obeso JA. The significance of defining preclinical or prodromal Parkinson's disease. Mov Disord. 2012;27(5):666-9.  https://doi.org/10.1002/mds.25019
  4. Schapira AH, Chaudhuri K, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435-50.  https://doi.org/10.1038/nrn.2017.62
  5. Liu Y, Niu L, Liu X et al. Recent progress in non-motor features of parkinson's disease with a focus on circadian rhythm dysregulation. Neurosci Bull. 2021;37(7):1010-24.  https://doi.org/10.1007/s12264-021-00711-x
  6. Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: a modulator of circadian rhythms in the central nervous system. Front Cell Neurosci. 2017;11:91. 
  7. Berg D, Borghammer P, Fereshtehnejad SM et al. Prodromal Parkinson disease subtypes-key to understanding heterogeneity. Nat Rev Neurol. 2021;17(6):349-61.  https://doi.org/10.1038/s41582-021-00486-9
  8. Nguyen AP, Tsika E, Kelly K et al. Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proc Natl Acad Sci. 2020;117(29):17296-307.  https://doi.org/10.1073/pnas.1922184117
  9. Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012;11(11):986-98.  https://doi.org/10.1016/S1474-4422(12)70190-4
  10. Migdalska-Richards A, Schapira AH. The relationship between glucocerebrosidase mutations and Parkinson disease. J Neurochem. 2016;139:77-90.  https://doi.org/10.1111/jnc.13385
  11. O'Regan G, deSouza RM, Balestrino R et al. Glucocerebrosidase mutations in Parkinson disease. J Parkinsons Dis. 2017;7(3):411-22.  https://doi.org/10.3233/JPD-171092
  12. Horsager J, Andersen KB, Knudsen K et al. Brain-first versus body-first Parkinson's disease: a multimodal imaging case-control study. Brain. 2020;143(10):3077-88.  https://doi.org/10.1093/brain/awaa238
  13. Gu Z, Wang B, Zhang YB et al. Association of ARNTL and PER1 genes with Parkinson's disease: a case-control study of Han Chinese. Sci Rep. 2015;28;5(1):15891. 
  14. Lou F, Li M, Ren Y et al. CLOCK rs1801260 polymorphism is associated with susceptibility to Parkinson's disease in a Chinese population. Neurosci Bull. 2017;33:734-6.  https://doi.org/10.1007/s12264-017-0167-5
  15. Lou F, Li M, Luo X et al. CLOCK 3111T/C variant correlates with motor fluctuation and sleep disorders in chinese patients with Parkinson's Disease. Parkinsons Dis. 2018;2018:4670380. 
  16. MEDICLASSICS [internet]. Daejeon: Korea Institute of Oriental Medicine. [2015]-. [cited 2022 Aug 30]. Available from: https://www.mediclassics.kr/ 
  17. Park M, Yoo H, Cho J et al. Lifestyles according to the seasons in the 〈Hwangjenaegyeong Somun Sagijosindaelon〉 re-examined from the perspective of modern researches on circadian clock. Korean J Subhealth Med. 2023;4(1):11-22.  https://doi.org/10.37928/kjsm.2023.4.1.11
  18. Bae S, Park M, Lee S et al. The Significance of Managing "Mibyeng" in Geriatric Health by Focusing on the Connection between Korean Medicine and Psychology: A Review. J Orient Neuropsychiatry. 2020;31(2):109-19. 
  19. Liu F, Chang HC. Physiological links of circadian clock and biological clock of aging. Protein & Cell. 2017;8(7):477-88.  https://doi.org/10.1007/s13238-016-0366-2
  20. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448-60.  https://doi.org/10.1016/j.cell.2013.05.027
  21. Gaenslen A, Swid I, Liepelt-Scarfone I et al. The patients' perception of prodromal symptoms before the initial diagnosis of Parkinson's disease. Mov Disord. 2011;26(4):653-8.  https://doi.org/10.1002/mds.23499
  22. Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016;90(4):675-91.  https://doi.org/10.1016/j.neuron.2016.03.038
  23. Grippo RM, Purohit AM, Zhang Q et al. Direct midbrain dopamine input to the suprachiasmatic nucleus accelerates circadian entrainment. Curr Biol. 2017;27(16):2465-75.  https://doi.org/10.1016/j.cub.2017.06.084
  24. Bucolo C, Leggio GM, Drago F et al. Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther. 2019;203:107392. 
  25. Borcherding DC, Hugo ER, Idelman G et al. Dopamine receptors in human adipocytes: expression and functions. PloS One. 2011;6(9):e25537. 
  26. Sowers JR, Vlachakis N. Circadian variation in plasma dopamine levels in man. J Endocrinol Investig. 1984;7(4):341-5.  https://doi.org/10.1007/BF03351014
  27. Poceta JS, Parsons L, Engelland S et al. Circadian rhythm of CSF monoamines and hypocretin-1 in restless legs syndrome and Parkinson's disease. Sleep Med. 2009;10(1):129-33.  https://doi.org/10.1016/j.sleep.2007.11.002
  28. Castaneda TR, de Prado BM, Prieto D et al. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res. 2004;36(3):177-85.  https://doi.org/10.1046/j.1600-079X.2003.00114.x
  29. Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther. 2014;144(3):268-82.  https://doi.org/10.1016/j.pharmthera.2014.06.006
  30. Guzman JN, Sanchez-Padilla J, Chan CS et al. Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci. 2009;29(35):11011-9.  https://doi.org/10.1523/JNEUROSCI.2519-09.2009
  31. Branch SY, Sharma R, Beckstead MJ. Aging decreases L-type calcium channel currents and pacemaker firing fidelity in substantia nigra dopamine neurons. J Neurosci. 2014;34(28):9310-8.  https://doi.org/10.1523/JNEUROSCI.4228-13.2014
  32. Phillipson OT. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Ageing Res Rev. 2017;40:149-67.  https://doi.org/10.1016/j.arr.2017.09.006
  33. Franco-Iborra S, Vila M, Perier C. The Parkinson disease mitochondrial hypothesis: where are we at?. Neuroscientist. 2016;22(3):266-77.  https://doi.org/10.1177/1073858415574600
  34. Kudo T, Loh DH, Truong D et al. Circadian dysfunction in a mouse model of Parkinson's disease. Experimental neurology. 2011;232(1):66-75.  https://doi.org/10.1016/j.expneurol.2011.08.003
  35. Siddiqui A, Chinta SJ, Mallajosyula JK et al. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease. Free Radic Biol Med. 2012;53(4):993-1003.  https://doi.org/10.1016/j.freeradbiomed.2012.05.024
  36. Fifel K, Vezoli J, Dzahini K et al. Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PloS One. 2014;9(1):e86240. 
  37. Hood S, Cassidy P, Cossette MP et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. Journal of neuroscience. 2010;30(42):14046-58.  https://doi.org/10.1523/JNEUROSCI.2128-10.2010
  38. Jackson CR, Ruan GX, Aseem F et al. Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci. 2012;32(27):9359-68.  https://doi.org/10.1523/JNEUROSCI.0711-12.2012
  39. Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464-74.  https://doi.org/10.1016/S1474-4422(09)70068-7
  40. Mundinano IC, Caballero MC, Ordonez C et al. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol. 2011;122(1):61-74.  https://doi.org/10.1007/s00401-011-0830-2
  41. Fifel K, Cooper HM. Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson's disease. Neurobiol Dis. 2014;71:359-69.  https://doi.org/10.1016/j.nbd.2014.08.024
  42. Alberico SL, Cassell MD, Narayanan NS. The vulnerable ventral tegmental area in Parkinson's disease. Basal Ganglia. 2015;5(2-3):51-5.  https://doi.org/10.1016/j.baga.2015.06.001
  43. Barandas R, Landgraf D, McCarthy MJ et al. Circadian clocks as modulators of metabolic comorbidity in psychiatric disorders. Curr Psychiatry Rep. 2015;17(12):1-2.  https://doi.org/10.1007/s11920-014-0542-0
  44. Stenvers DJ, Scheer FA, Schrauwen P et al. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75-89.  https://doi.org/10.1038/s41574-018-0122-1
  45. Fiory F, Perruolo G, Cimmino I et al. The relevance of insulin action in the dopaminergic system. Front Neurosci. 2019;13:868. 
  46. Lauretti E, Di Meco A, Merali S et al. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson's disease. Mol Psychiatry. 2017;22(2):280-6.  https://doi.org/10.1038/mp.2016.47
  47. Hogg E, Athreya K, Basile C, Tan EE, Kaminski J, Tagliati M. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinson's disease. J Parkinson's Dis. 2018;8(2):259-65.  https://doi.org/10.3233/JPD-181305
  48. Cao XY, Zhang JR, Shen Y et al. Fatigue correlates with sleep disturbances in Parkinson disease. Chin Med J. 2021;134(06):668-74.  https://doi.org/10.1097/CM9.0000000000001303
  49. Si X, Guo T, Wang Z, Fang Y et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis. 2022;8(1):54. 
  50. Morris JK, Bomhoff GL, Gorres BK et al. Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol. 2011;231(1):171-80.  https://doi.org/10.1016/j.expneurol.2011.06.005
  51. Kleinridders A, Cai W, Cappellucci L et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci. 2015;112(11):3463-8.  https://doi.org/10.1073/pnas.1500877112
  52. Kleinridders A, Pothos EN. Impact of brain insulin signaling on dopamine function, food intake, reward, and emotional behavior. Curr Nutr Rep. 2019;8:83-91.  https://doi.org/10.1007/s13668-019-0276-z
  53. Lee SD, Kim MD. Study on the Siginificance and Importance of Preclinic Phase Theory (= mibyung) in Oriental Medicine. J Soc Prev Kor Med. 1997;1(1):105-17. 
  54. Adams-Carr KL, Bestwick JP, Shribman S et al. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(7):710-6.  https://doi.org/10.1136/jnnp-2015-311680
  55. Gallegos-Orozco JF, Foxx-Orenstein AE, Sterler SM, Stoa JM. Chronic constipation in the elderly. Off J Am Coll Gastroenterol ACG. 2012;107(1):18-25.  https://doi.org/10.1038/ajg.2011.349
  56. Ryu JM, Park YB, Park YJ. A study on validity of the Korean version of the subhealth questionnaire. J Soc Kor Med Diagnostics. 2009;13(2):78-87. 
  57. Jang E, Yoon JH, Lee Y. The evaluation of reliability and validity for Mibyeong questionnaire. J Soc Kor Med Diagnostics. 2017;21(1):13-25. 
  58. Marsden CD, Parkes JD. " On-off" effects in patients with Parkinson's disease on chronic levodopa therapy. Lancet. 1976;307(7954):292-6.  https://doi.org/10.1016/S0140-6736(76)91416-1
  59. Chou KL, Stacy M, Simuni T et al. The spectrum of "off" in Parkinson's disease: what have we learned over 40 years?. Parkinsonism Relat Disord. 2018;51:9-16.  https://doi.org/10.1016/j.parkreldis.2018.02.001
  60. Kang S, Park S. Analysis of Studies on 'Mibyung'. J Soc Prev Korean Med. 2019;23(2):77-89. https://doi.org/10.25153/spkom.2019.23.2.007