DOI QR코드

DOI QR Code

Immune-enhancing Effects of Echinacea purpurea Extracts on RAW264.7 Cells via TLR4-mediated NF-κB and MAPKs Pathways

  • Received : 2023.04.06
  • Accepted : 2023.09.18
  • Published : 2023.10.25

Abstract

Echinacea purpurea (L.) Moench is a medicinal plant from North America, Europe, and Australia that has been traditionally used to treat the common cold, bronchitis, coughs, and inflammation of the pharynx and mouth. Furthermore, extracts of Echinacea purpurea (EP) exert various biological effects, such as antioxidant, antibacterial, and anti-inflammatory activities. However, the possible mechanisms of action of the immune-enhancing effects are yet to be elucidated. Therefore, this study investigated the role of EP extracts in the immune-enhancing effects of RAW264.7 cells and the underlying mechanisms of action. It was found that EP extracts considerably increased the protein expression of iNOS, COX-2, and mPGES-1 in RAW264.7 cells. Also, EP extracts increased NO production, phagocytic activity, and the expression of cytokines. Consistent with these results, phosphorylation of MAPKs (ERK, JNK, and p38) and NF-κB (IKKα/β, IκBα, and NF-κB p65) were induced after treatment with EP extracts. Finally, EP extracts caused a marked increase in activation of the TLR4-TRAF6-TAK1 pathway. These results suggest that the immune-enhancing effects of EP extracts are mediated through the TLR4-associated activation of the NF-κB and MAPK pathways in RAW264.7 cells. Thus, it is suggested that EP extracts could be considered as a potential immunostimulatory agent or functional food.

Keywords

Acknowledgement

The authors thank Evear Extraction, Feline, France for providing samples, encouragement, and generous support.

References

  1. Hong SH, Ku JM, Kim HI, Ahn CW, Park S-H, Seo HS, et al. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res Int. 2017;99:623-9.  https://doi.org/10.1016/j.foodres.2017.06.053
  2. Yang F, Li X, Yang Y, Ayivi-Tosuh SM, Wang F, Li H, et al. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. Int J Biol Macromol. 2019;140:895-906.  https://doi.org/10.1016/j.ijbiomac.2019.08.174
  3. Lee J, Kim S, Kang CH. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms. 2022;10:2247. 
  4. Geng L, Hu W, Liu Y, Wang J, Zhang Q. A heteropolysaccharide from Saccharina japonica with immunomodulatory effect on RAW 264.7 cells. Carbohydr Polym. 2018;201:557-65.  https://doi.org/10.1016/j.carbpol.2018.08.096
  5. Geum NG, Eo HJ, Kim HJ, Park GH, Son HJ, Jeong JB. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264.7 cells and immunosuppressed mice. J Funct Foods. 2020;73:104139. 
  6. Kang CH, Kim JS, Kim H, Park HM, Paek NS. Heat-killed lactic acid bacteria inhibit nitric oxide production via inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. Probiotics Antimicrob Proteins. 2021;13:1530-8.  https://doi.org/10.1007/s12602-021-09781-9
  7. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017;19:92. 
  8. Rao KMK. MAP kinase activation in macrophages. J Leukoc Biol. 2001;69:3-10.  https://doi.org/10.1189/jlb.69.1.3
  9. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta - Mol Basis Dis. 2010;1802:396-405.  https://doi.org/10.1016/j.bbadis.2009.12.009
  10. Miettinen M, Lehtonen A, Julkunen I, Matikainen S. Lactobacilli and streptococci activate NF-κB and STAT signaling pathways in human macrophages. J Immunol. 2000;164:3733-40.  https://doi.org/10.4049/jimmunol.164.7.3733
  11. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9:2723-35.  https://doi.org/10.1101/gad.9.22.2723
  12. Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-60.  https://doi.org/10.1146/annurev.immunol.16.1.225
  13. Wills RBH, Stuart DL. Alkylamide and cichoric acid levels in Echinacea purpurea grown in Australia. Food Chem. 1999;67:385-8.  https://doi.org/10.1016/S0308-8146(99)00129-6
  14. Barnes J, Anderson LA, Gibbons S, Phillipson JD. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol. 2005;57:929-54.  https://doi.org/10.1211/0022357056127
  15. Hohmann J, Redei D, Forgo P, Szabo P, Freund TF, Haller J, et al. Alkamides and a neolignan from Echinacea purpurea roots and the interaction of alkamides with G-protein-coupled cannabinoid receptors. Phytochem. 2011;72:1848-53.  https://doi.org/10.1016/j.phytochem.2011.06.008
  16. Woelkart K, Bauer R. The role of alkamides as an active principle of Echinacea. Planta Med. 2007;73:615-23.  https://doi.org/10.1055/s-2007-981531
  17. Sharma M, Anderson SA, Schoop R, Hudson JB. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Res. 2009;83:165-70.  https://doi.org/10.1016/j.antiviral.2009.04.009
  18. Todd DA, Gulledge TV, Britton ER, Oberhofer M, Leyte-Lugo M, Moody AN, et al. Ethanolic Echinacea purpurea extracts contain a mixture of cytokine-suppressive and cytokine-inducing compounds, including some that originate from endophytic bacteria. PloS one. 2015;10:e0124276. 
  19. Kim HR, Kim YS, Lee DR, Choi BK, Kwon KB, Bae GS. Echinacea purpurea Alleviates Cyclophosphamide-Induced Immunosuppression in Mice. Appl Sci. 2022;12:105. 
  20. Li ZP, Liu HB, Zhang QW, Li LF, Bao WR, Ma DL, et al. Interference of quercetin on Astragalus polysaccharide-induced macrophage activation. Molecules. 2018;23:1563. 
  21. Wang L, Shi J, van Ginkel FW, Lan L, Niemeyer G, Martin DR, et al. Neural stem/progenitor cells modulate immune responses by suppressing T lymphocytes with nitric oxide and prostaglandin E2. Exp Neurol. 2009;216:177-83.  https://doi.org/10.1016/j.expneurol.2008.11.017
  22. Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol. 2020;64:61-82.  https://doi.org/10.1016/j.semcancer.2019.05.002
  23. Xu Z, Lin R, Hou X, Wu J, Zhao W, Ma H, et al. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264. 7 cells via activating TLR4-MAPK-NF-κB signaling pathway. Int J Biol Macromol. 2020;164:4329-38.  https://doi.org/10.1016/j.ijbiomac.2020.09.035
  24. Ji C, Zhang Z, Chen J, Song D, Liu B, Li J, et al. Immune-enhancing effects of a novel glucan from purple sweet potato Ipomoea batatas (L.) Lam on RAW264. 7 macrophage cells via TLR2-and TLR4-mediated pathways. J Agric Food Chem. 2021;69:9313-25.  https://doi.org/10.1021/acs.jafc.1c03850
  25. Zhang Y, Zhang A, Zhao Y, Feng X, Sheng Y, Zhang H, et al. Expressions of TLR4, MyD88, IRAK4 and NF-ÎB in the oviduct of Chinese brown frog (Rana dybowskii). Eur J Histochem. 2019;63:3050. 
  26. Billack B. Macrophage activation: role of toll-like receptors, nitric oxide, and nuclear factor kappa B. Am J Pharm Educ. 2006;70:102. 
  27. Kumar KM, Ramaiah S. Pharmacological importance of Echinacea purpurea. Int J Pharma Bio Sci. 2011;2:304-14. 
  28. Pullaiah T. Encyclopedia of world medicinal plants. Volume 1. Daya Books; 2006. p. 841-2. 
  29. Mishima S, Saito K, Maruyama H, Inoue M, Yamashita T, Ishida T, et al. Antioxidant and immuno-enhancing effects of Echinacea purpurea. Biol Pharm Bull. 2004;27:1004-9.  https://doi.org/10.1248/bpb.27.1004
  30. Sharma SM, Anderson M, Schoop SR, Hudson JB. Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce®): dual actions against respiratory bacteria. Phytomedicine 2010;17:563-8.  https://doi.org/10.1016/j.phymed.2009.10.022
  31. Kasimu R, Chen C, Xie X, Li X. Water-soluble polysaccharide from Erythronium sibiricum bulb: Structural characterisation and immunomodulating activity. Int J Biol Macromol. 2017;105:452-62.  https://doi.org/10.1016/j.ijbiomac.2017.07.060
  32. Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett 2009;123:97-102.  https://doi.org/10.1016/j.imlet.2009.02.011
  33. Ma X, Meng M, Han L, Cheng D, Cao X, Wang C. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κB pathways. Food Funct. 2016;7:2763-72.  https://doi.org/10.1039/C6FO00279J
  34. Zhang S, Nie S, Huang D, Huang J, Wang Y, Xie M. Polysaccharide from Ganoderma atrum evokes antitumor activity via Toll-like receptor 4-mediated NF-κB and mitogen-activated protein kinase signaling pathways. J Agric Food Chem. 2013;61:3676-82.  https://doi.org/10.1021/jf4004225
  35. Shreshtha S, Sharma P, Kumar P, Sharma R, Singh SP. Nitric Oxide: It's Role in Immunity. J Clin Diagn Res. 2018;12:BE01-BE05.  https://doi.org/10.7860/JCDR/2018/31817.11764
  36. Lee HW, Choi IW, Ha SK. Immunostimulatory activities of theobromine on macrophages via the activation of MAPK and NF-κB signaling pathways. Curr Issues Mol Biol. 2022;44:4216-28.  https://doi.org/10.3390/cimb44090289
  37. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. 
  38. Shen CY, Zhang WL, Jiang JG. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kB signaling pathways in RAW264. 7 cells. J Funct Foods. 2017;34:118-29.  https://doi.org/10.1016/j.jff.2017.03.060
  39. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1-9.  https://doi.org/10.1038/sigtrans.2017.23
  40. Wang Y-Q, Mao J-B, Zhou M-Q, Jin Y-W, Lou C-H, Dong Y, et al. Polysaccharide from Phellinus Igniarius activates TLR4-mediated signaling pathways in macrophages and shows immune adjuvant activity in mice. Int J Biol Macromol. 2019;123:157-66.  https://doi.org/10.1016/j.ijbiomac.2018.11.066
  41. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145-51.  https://doi.org/10.1016/j.cyto.2008.01.006
  42. Poltorak A, He X, Smirnova I, Liu M-Y, Huffel CV, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085-8.  https://doi.org/10.1126/science.282.5396.2085
  43. Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X. IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFκB. J Biol Chem. 2001;276:41661-7.  https://doi.org/10.1074/jbc.M102262200
  44. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999;13:1297-1308.  https://doi.org/10.1101/gad.13.10.1297
  45. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature. 1996;383:443-6.  https://doi.org/10.1038/383443a0
  46. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015-24.  https://doi.org/10.1101/gad.13.8.1015
  47. Jadhav T, Geetha T, Jiang J, Wooten MW. Identification of a consensus site for TRAF6/p62 polyubiquitination. Biochem Biophys Res Commun. 2008;371:521-4.  https://doi.org/10.1016/j.bbrc.2008.04.138
  48. Yang K, Zhu J, Sun S, Tang Y, Zhang B, Diao L, et al. The coiled-coil domain of TRAF6 is essential for its auto-ubiquitination. Biochem Biophys Res Commun. 2004;324:432-9.  https://doi.org/10.1016/j.bbrc.2004.09.070
  49. Chiu YH, Zhao M, Chen ZJ. Ubiquitin in NF-κB signaling. Chem Rev. 2009;109:1549-60. https://doi.org/10.1021/cr800554j