DOI QR코드

DOI QR Code

Are there network differences between the ipsilateral and contralateral hemispheres of pain in patients with episodic migraine without aura?

  • Junseok Jang (Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine) ;
  • Sungyeong Ryu (Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine) ;
  • Dong Ah Lee (Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine) ;
  • Kang Min Park (Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine)
  • 투고 : 2023.08.07
  • 심사 : 2023.09.25
  • 발행 : 2023.10.30

초록

Background: We aimed to identify any differences in the structural covariance network based on structural volume and those in the functional network based on cerebral blood flow between the ipsilateral and contralateral hemispheres of pain in patients with episodic migraine without aura. Methods: We prospectively enrolled 27 patients with migraine without aura, all of whom had unilateral migraine pain. We defined the ipsilateral hemisphere as the side of migraine pain. We measured structural volumes on three-dimensional T1-weighted images and cerebral blood flow using arterial spin labeling magnetic resonance imaging. We then analyzed the structural covariance network based on structural volume and the functional network based on cerebral blood flow using graph theory. Results: There were no significant differences in structural volume or cerebral blood flow between the ipsilateral and contralateral hemispheres. However, there were significant differences between the hemispheres in the structural covariance network and the functional network. In the structural covariance network, the betweenness centrality of the thalamus was lower in the ipsilateral hemisphere than in the contralateral hemisphere. In the functional network, the betweenness centrality of the anterior cingulate and paracingulate gyrus was lower in the ipsilateral hemisphere than in the contralateral hemisphere, while that of the opercular part of the inferior frontal gyrus was higher in the former hemisphere. Conclusions: The present findings indicate that there are significant differences in the structural covariance network and the functional network between the ipsilateral and contralateral hemispheres of pain in patients with episodic migraine without aura.

키워드

과제정보

This work was supported by the National Research Foundation of Korea NRF) grant funded by the Korea government MSIT) No. RS-2023-00209722)

참고문헌

  1. Stewart WF, Wood C, Reed ML, Roy J, Lipton RB. Cumulative lifetime migraine incidence in women and men. Cephalalgia 2008;28:1170-1178. https://doi.org/10.1111/j.1468-2982.2008.01666.x
  2. Leone M, D'Amico D, Frediani F, Torri W, Sjaastad O, Bussone G. Clinical considerations on side-locked unilaterality in long-lasting primary headaches. Headache 1993;33:381-384. https://doi.org/10.1111/j.1526-4610.1993.hed3307381.x
  3. Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol 2017;264:2031-2039. https://doi.org/10.1007/s00415-017-8434-y
  4. Schwedt TJ, Chiang CC, Chong CD, Dodick DW. Functional MRI of migraine. Lancet Neurol 2015;14:81-91. https://doi.org/10.1016/S1474-4422(14)70193-0
  5. Liu J, Zhao L, Li G, Xiong S, Nan J, Li J, et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS One 2012;7:e51250.
  6. de Tommaso M, Trotta G, Vecchio E, Ricci K, Siugzdaite R, Stramaglia S. Brain networking analysis in migraine with and without aura. J Headache Pain 2017;18:98.
  7. Ren J, Xiang J, Chen Y, Li F, Wu T, Shi J. Abnormal functional connectivity under somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study. J Headache Pain 2019;20:3.
  8. Jia Z, Yu S. Grey matter alterations in migraine: a systematic review and meta-analysis. Neuroimage Clin 2017;14:130-140. https://doi.org/10.1016/j.nicl.2017.01.019
  9. Chong CD, Aguilar M, Schwedt TJ. Altered hypothalamic region covariance in migraine and cluster headache: a structural MRI study. Headache 2020;60:553-563. https://doi.org/10.1111/head.13742
  10. Chen JJ, Jann K, Wang DJ. Characterizing resting-state brain function using arterial spin labeling. Brain Connect 2015;5:527-542. https://doi.org/10.1089/brain.2015.0344
  11. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012;35:1026-1037. https://doi.org/10.1002/jmri.23581
  12. Pollock JM, Deibler AR, Burdette JH, Kraft RA, Tan H, Evans AB, et al. Migraine associated cerebral hyperperfusion with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol 2008;29:1494-1497. https://doi.org/10.3174/ajnr.A1115
  13. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.
  14. Dai W, Varma G, Scheidegger R, Alsop DC. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI. J Cereb Blood Flow Metab 2016;36:463-473. https://doi.org/10.1177/0271678X15615339
  15. Lee DA, Lee HJ, Kim HC, Park KM. Network differences based on arterial spin labeling related to anti-seizure medication response in focal epilepsy. Neuroradiology 2022;64:313-321. https://doi.org/10.1007/s00234-021-02741-8
  16. Boscolo Galazzo I, Storti SF, Barnes A, De Blasi B, De Vita E, Koepp M, et al. Arterial spin labeling reveals disrupted brain networks and functional connectivity in drug-resistant temporal epilepsy. Front Neuroinform 2019;12:101.
  17. Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition. Cephalalgia 2018;38:1-211. https://doi.org/10.1177/0333102417738202
  18. Wang Z, Aguirre GK, Rao H, Wang J, Fernandez-Seara MA, Childress AR, et al. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 2008;26:261-269. https://doi.org/10.1016/j.mri.2007.07.003
  19. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 2015;122:1-5. https://doi.org/10.1016/j.neuroimage.2015.07.075
  20. Mijalkov M, Kakaei E, Pereira JB, Westman E, Volpe G. BRAPH: a graph theory software for the analysis of brain connectivity. PLoS One 2017;12:e0178798.
  21. Farahani FV, Karwowski W, Lighthall NR. Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 2019;13:585.
  22. May A. Morphing voxels: the hype around structural imaging of headache patients. Brain 2009;132:1419-1425. https://doi.org/10.1093/brain/awp116
  23. Kivimaki I, Lebichot B, Saramaki J, Saerens M. Two betweenness centrality measures based on randomized shortest paths. Sci Rep 2016;6:19668.
  24. Younis S, Hougaard A, Noseda R, Ashina M. Current understanding of thalamic structure and function in migraine. Cephalalgia 2019;39:1675-1682. https://doi.org/10.1177/0333102418791595
  25. Tu Y, Fu Z, Zeng F, Maleki N, Lan L, Li Z, et al. Abnormal thalamocortical network dynamics in migraine. Neurology 2019;92:e2706-e2716.
  26. Coppola G, Di Renzo A, Tinelli E, Lepre C, Di Lorenzo C, Di Lorenzo G, et al. Thalamo-cortical network activity between migraine attacks: insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain 2016;17:100.
  27. Shin KJ, Lee HJ, Park KM. Alterations of individual thalamic nuclei volumes in patients with migraine. J Headache Pain 2019;20:112.
  28. Russo A, Tessitore A, Esposito F, Marcuccio L, Giordano A, Conforti R, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol 2012;259:1903-1912. https://doi.org/10.1007/s00415-012-6438-1
  29. Schwedt TJ, Chong CD, Chiang CC, Baxter L, Schlaggar BL, Dodick DW. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia 2014;34:947-958. https://doi.org/10.1177/0333102414526069
  30. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1-38. https://doi.org/10.1196/annals.1440.011
  31. Tessitore A, Russo A, Giordano A, Conte F, Corbo D, De Stefano M, et al. Disrupted default mode network connectivity in migraine without aura. J Headache Pain 2013;14:89.
  32. Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 2008;28:1398-1403. https://doi.org/10.1523/JNEUROSCI.4123-07.2008
  33. Xue T, Yuan K, Cheng P, Zhao L, Zhao L, Yu D, et al. Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed 2013;26:1051-1058. https://doi.org/10.1002/nbm.2917
  34. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004;24:10410-10415. https://doi.org/10.1523/JNEUROSCI.2541-04.2004
  35. Szabo E, Galambos A, Kocsel N, Edes AE, Pap D, Zsombok T, et al. Association between migraine frequency and neural response to emotional faces: an fMRI study. Neuroimage Clin 2019;22:101790.
  36. Varol U, Ubeda-D'Ocasar E, Cigaran-Mendez M, Arias-Buria JL, Fernandez-de-Las-Penas C, Gallego-Sendarrubias GM, et al. Understanding the psychophysiological and sensitization mechanisms behind fibromyalgia syndrome: a network analysis approach. Pain Med 2023;24:275-284. https://doi.org/10.1093/pm/pnac121
  37. Zhang YP, Hong GH, Zhang CY. Brain network changes in lumbar disc herniation induced chronic nerve roots compression syndromes. Neural Plast 2022;2022:7912410.
  38. Zhang JP, Shen J, Xiang YT, Xing XX, Kang BX, Zhao C, et al. Modulation of brain network topological properties in knee osteoarthritis by electroacupuncture in rats. J Pain Res 2023;16:1595-1605.
  39. Fernandez-de-Las-Penas C, Herrero-Montes M, Cancela-Cilleruelo I, Rodriguez-Jimenez J, Paras-Bravo P, Varol U, et al. Understanding sensitization, cognitive and neuropathic associated mechanisms behind post-COVID pain: a network analysis. Diagnostics (Basel) 2022;12:1538.
  40. Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. Neuroimage 2014;102 Pt 1:11-23.  https://doi.org/10.1016/j.neuroimage.2013.09.044